Surface Damage Analysis on the Application of Abrasion and Slurry Erosion in Targeted Steels Using an Erosion Test Rig

The research focuses on slurry abrasion and erosion of martensitic steels used in the mining and agricultural industries. A traditionally constructed slurry pot tester with corundum abrasives in slurry form was used for wear characterisation. Wear testing was performed on each specimen for 180 h. Ev...

Full description

Bibliographic Details
Main Authors: Ádám Kalácska, Rajini Nagarajan, Levente Ferenc Tóth, Patrick De Baets, Karthikeyan Subramanian, Suchart Siengchin, Gábor Kalácska
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Lubricants
Subjects:
Online Access:https://www.mdpi.com/2075-4442/10/11/316
Description
Summary:The research focuses on slurry abrasion and erosion of martensitic steels used in the mining and agricultural industries. A traditionally constructed slurry pot tester with corundum abrasives in slurry form was used for wear characterisation. Wear testing was performed on each specimen for 180 h. Every 20 h, pauses were taken to characterise the specimen size, weight, hardness, and surface roughness. The worn zone’s damage progression was studied using optical microscopy. As the test period rose, the mass loss due to the wear, which was governed by the impact angle of the slurry flow, followed a linear pattern. The impact of specimen orientation on the wear rate was more pronounced than that of abrasive flow velocity. High-speed video recordings highlighted the varied contact conditions that caused the wear mechanism to shift from abrasion to slurry erosion. Slurry abrasion was seen at the bottom of the specimen as a result of pure sliding conditions, while pitting was observed at the top of the specimen as a result of fatigue from particle impact. Studies of 3D surfaces demonstrated a decrease in wear rate while transitioning from the abraded zone, which witnessed polishing and minor hardness, to the pitting zone. The wear performance of the materials was rated, with tempered martensitic steel coming out on top.
ISSN:2075-4442