Enhancing Stability of Grid-Supporting Inverters from an Analytical Point of View with Lessons from Microgrids

The central components influencing future grid stability in the future are inverters and their controllers. This paper delves into the pivotal role of inverters and their controllers in shaping the future stability of grids. Focusing on grid-supporting inverters, the study utilizes a microgrid test...

Full description

Bibliographic Details
Main Authors: Carina Lehmal, Ziqian Zhang, Herwig Renner, Robert Schürhuber
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/24/8054
Description
Summary:The central components influencing future grid stability in the future are inverters and their controllers. This paper delves into the pivotal role of inverters and their controllers in shaping the future stability of grids. Focusing on grid-supporting inverters, the study utilizes a microgrid test setup to explore their impact on overall grid stability. Employing impedance-based stability analysis with the Nyquist criterion, the paper introduces variations in internal inverter parameters and external grid parameters using pole-zero map considerations. The inverter’s control structure, resembling standard generators with droop control, facilitates the application of grid operators’ knowledge to inverter control. Mathematical insights into stability principles are provided, highlighting the influence of poles related to the phase-locked loop and the strategic placement of additional poles for enhanced stability. Furthermore, the paper evaluates the effects of rotating inertia, revealing that a 50% increase in system inertia can stabilize unstable microgrid behavior, enabling grid-supporting inverters to actively contribute to grid reliability.
ISSN:1996-1073