High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury Mitigation
Burn injuries are commonly treated with split-thickness skin grafting. However, low expansions offered by spilt-thickness skin grafting inhibit the treatment of large and severe burn injuries when limited donor skin is available. To overcome this gap, in this work, it was attempted to study the expa...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | European Burn Journal |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-1991/4/1/11 |
_version_ | 1797612272467574784 |
---|---|
author | Vivek Gupta Gurpreet Singh Arnab Chanda |
author_facet | Vivek Gupta Gurpreet Singh Arnab Chanda |
author_sort | Vivek Gupta |
collection | DOAJ |
description | Burn injuries are commonly treated with split-thickness skin grafting. However, low expansions offered by spilt-thickness skin grafting inhibit the treatment of large and severe burn injuries when limited donor skin is available. To overcome this gap, in this work, it was attempted to study the expansion potential of skin grafts with novel auxetic incisions with rotating rectangle (RR), honeycomb (HC), alternating slit (AS), H-shaped (HS), Y-shaped (YS), and I-shaped (IS) unit cells, through development of skin graft simulants. Clinically relevant biaxial load testing was conducted to estimate the stress–strain response, void area, and meshing ratio. Moreover, hyperelastic constitutive models were employed to characterize the non-linear biomechanical behavior of the skin graft simulants. The maximum void area increase was observed in the HS skin graft simulant, indicating low skin cover. Overall, the IS auxetic skin graft design exhibited meshing ratio higher than traditional grafts (>3:1), low void area and stresses, which can be beneficial for large skin cover and burn wound healing. With further optimization and clinical tests, the auxetic skin graft designs may find a place with the graft manufacturers for fabrication of grafts with better surgical outcomes for severe burn injuries. |
first_indexed | 2024-03-11T06:39:57Z |
format | Article |
id | doaj.art-838eb68c0cc14d5c8fbdbde113156104 |
institution | Directory Open Access Journal |
issn | 2673-1991 |
language | English |
last_indexed | 2024-03-11T06:39:57Z |
publishDate | 2023-03-01 |
publisher | MDPI AG |
record_format | Article |
series | European Burn Journal |
spelling | doaj.art-838eb68c0cc14d5c8fbdbde1131561042023-11-17T10:40:30ZengMDPI AGEuropean Burn Journal2673-19912023-03-014110812010.3390/ebj4010011High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury MitigationVivek Gupta0Gurpreet Singh1Arnab Chanda2Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi 110016, IndiaCentre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi 110016, IndiaCentre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi 110016, IndiaBurn injuries are commonly treated with split-thickness skin grafting. However, low expansions offered by spilt-thickness skin grafting inhibit the treatment of large and severe burn injuries when limited donor skin is available. To overcome this gap, in this work, it was attempted to study the expansion potential of skin grafts with novel auxetic incisions with rotating rectangle (RR), honeycomb (HC), alternating slit (AS), H-shaped (HS), Y-shaped (YS), and I-shaped (IS) unit cells, through development of skin graft simulants. Clinically relevant biaxial load testing was conducted to estimate the stress–strain response, void area, and meshing ratio. Moreover, hyperelastic constitutive models were employed to characterize the non-linear biomechanical behavior of the skin graft simulants. The maximum void area increase was observed in the HS skin graft simulant, indicating low skin cover. Overall, the IS auxetic skin graft design exhibited meshing ratio higher than traditional grafts (>3:1), low void area and stresses, which can be beneficial for large skin cover and burn wound healing. With further optimization and clinical tests, the auxetic skin graft designs may find a place with the graft manufacturers for fabrication of grafts with better surgical outcomes for severe burn injuries.https://www.mdpi.com/2673-1991/4/1/11biaxial testingtissue simulantsstress analysisauxeticsskin grafts |
spellingShingle | Vivek Gupta Gurpreet Singh Arnab Chanda High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury Mitigation European Burn Journal biaxial testing tissue simulants stress analysis auxetics skin grafts |
title | High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury Mitigation |
title_full | High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury Mitigation |
title_fullStr | High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury Mitigation |
title_full_unstemmed | High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury Mitigation |
title_short | High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury Mitigation |
title_sort | high expansion auxetic skin graft simulants for severe burn injury mitigation |
topic | biaxial testing tissue simulants stress analysis auxetics skin grafts |
url | https://www.mdpi.com/2673-1991/4/1/11 |
work_keys_str_mv | AT vivekgupta highexpansionauxeticskingraftsimulantsforsevereburninjurymitigation AT gurpreetsingh highexpansionauxeticskingraftsimulantsforsevereburninjurymitigation AT arnabchanda highexpansionauxeticskingraftsimulantsforsevereburninjurymitigation |