The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite

Abstract Diversification of biocrystal arrangements, incorporation of biopolymers at many scale levels and hierarchical architectures are keys for biomaterial optimization. The planktonic rotaliid foraminifer Pulleniatina obliquiloculata displays in its shell a new kind of mesocrystal architecture....

Full description

Bibliographic Details
Main Authors: J. Lastam, E. Griesshaber, X. Yin, U. Rupp, I. Sánchez-Almazo, M. Heß, P. Walther, A. Checa, W. W. Schmahl
Format: Article
Language:English
Published: Nature Portfolio 2023-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-25082-9
_version_ 1811165935217672192
author J. Lastam
E. Griesshaber
X. Yin
U. Rupp
I. Sánchez-Almazo
M. Heß
P. Walther
A. Checa
W. W. Schmahl
author_facet J. Lastam
E. Griesshaber
X. Yin
U. Rupp
I. Sánchez-Almazo
M. Heß
P. Walther
A. Checa
W. W. Schmahl
author_sort J. Lastam
collection DOAJ
description Abstract Diversification of biocrystal arrangements, incorporation of biopolymers at many scale levels and hierarchical architectures are keys for biomaterial optimization. The planktonic rotaliid foraminifer Pulleniatina obliquiloculata displays in its shell a new kind of mesocrystal architecture. Shell formation starts with crystallization of a rhizopodial network, the primary organic sheet (POS). On one side of the POS, crystals consist of blocky domains of 1 μm. On the other side of the POS crystals have dendritic-fractal morphologies, interdigitate and reach sizes of tens of micrometers. The dendritic-fractal crystals are twinned. At the site of nucleation, twinned crystals consist of minute fibrils. With distance away from the nucleation-site, fibrils evolve to bundles of crystallographically well co-oriented nanofibrils and to, twinned, platy-blade-shaped crystals that seam outer shell surfaces. The morphological nanofibril axis is the crystallographic c-axis, both are perpendicular to shell vault. The nanofibrillar calcite is polysynthetically twinned according to the 60°/[100] (= m/{001}) twin law. We demonstrate for the twinned, fractal-dendritic, crystals formation at high supersaturation and growth through crystal competition. We show also that c-axis-alignment is already induced by biopolymers of the POS and is not simply a consequence of growth competition. We discuss determinants that lead to rotaliid calcite formation.
first_indexed 2024-04-10T15:44:18Z
format Article
id doaj.art-8394007078dd4476bd9e686c526f01aa
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-10T15:44:18Z
publishDate 2023-02-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-8394007078dd4476bd9e686c526f01aa2023-02-12T12:11:33ZengNature PortfolioScientific Reports2045-23222023-02-0113111910.1038/s41598-022-25082-9The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calciteJ. Lastam0E. Griesshaber1X. Yin2U. Rupp3I. Sánchez-Almazo4M. Heß5P. Walther6A. Checa7W. W. Schmahl8Forschungszentrum Jülich, Institut für Energie und Klimaforschung, IEK-2Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität MünchenDepartment für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität MünchenZentrale Einrichtung Elektronenmikroskopie, Universität UlmCentro de Instrumentación Científica, Universidad de GranadaBiozentrum LMU MünchenZentrale Einrichtung Elektronenmikroskopie, Universität UlmDepartamento de Estratigrafía y Paleontología, Universidad de GranadaDepartment für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität MünchenAbstract Diversification of biocrystal arrangements, incorporation of biopolymers at many scale levels and hierarchical architectures are keys for biomaterial optimization. The planktonic rotaliid foraminifer Pulleniatina obliquiloculata displays in its shell a new kind of mesocrystal architecture. Shell formation starts with crystallization of a rhizopodial network, the primary organic sheet (POS). On one side of the POS, crystals consist of blocky domains of 1 μm. On the other side of the POS crystals have dendritic-fractal morphologies, interdigitate and reach sizes of tens of micrometers. The dendritic-fractal crystals are twinned. At the site of nucleation, twinned crystals consist of minute fibrils. With distance away from the nucleation-site, fibrils evolve to bundles of crystallographically well co-oriented nanofibrils and to, twinned, platy-blade-shaped crystals that seam outer shell surfaces. The morphological nanofibril axis is the crystallographic c-axis, both are perpendicular to shell vault. The nanofibrillar calcite is polysynthetically twinned according to the 60°/[100] (= m/{001}) twin law. We demonstrate for the twinned, fractal-dendritic, crystals formation at high supersaturation and growth through crystal competition. We show also that c-axis-alignment is already induced by biopolymers of the POS and is not simply a consequence of growth competition. We discuss determinants that lead to rotaliid calcite formation.https://doi.org/10.1038/s41598-022-25082-9
spellingShingle J. Lastam
E. Griesshaber
X. Yin
U. Rupp
I. Sánchez-Almazo
M. Heß
P. Walther
A. Checa
W. W. Schmahl
The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite
Scientific Reports
title The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite
title_full The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite
title_fullStr The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite
title_full_unstemmed The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite
title_short The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite
title_sort unique fibrilar to platy nano and microstructure of twinned rotaliid foraminiferal shell calcite
url https://doi.org/10.1038/s41598-022-25082-9
work_keys_str_mv AT jlastam theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT egriesshaber theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT xyin theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT urupp theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT isanchezalmazo theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT mheß theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT pwalther theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT acheca theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT wwschmahl theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT jlastam uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT egriesshaber uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT xyin uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT urupp uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT isanchezalmazo uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT mheß uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT pwalther uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT acheca uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite
AT wwschmahl uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite