The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite
Abstract Diversification of biocrystal arrangements, incorporation of biopolymers at many scale levels and hierarchical architectures are keys for biomaterial optimization. The planktonic rotaliid foraminifer Pulleniatina obliquiloculata displays in its shell a new kind of mesocrystal architecture....
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-02-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-022-25082-9 |
_version_ | 1811165935217672192 |
---|---|
author | J. Lastam E. Griesshaber X. Yin U. Rupp I. Sánchez-Almazo M. Heß P. Walther A. Checa W. W. Schmahl |
author_facet | J. Lastam E. Griesshaber X. Yin U. Rupp I. Sánchez-Almazo M. Heß P. Walther A. Checa W. W. Schmahl |
author_sort | J. Lastam |
collection | DOAJ |
description | Abstract Diversification of biocrystal arrangements, incorporation of biopolymers at many scale levels and hierarchical architectures are keys for biomaterial optimization. The planktonic rotaliid foraminifer Pulleniatina obliquiloculata displays in its shell a new kind of mesocrystal architecture. Shell formation starts with crystallization of a rhizopodial network, the primary organic sheet (POS). On one side of the POS, crystals consist of blocky domains of 1 μm. On the other side of the POS crystals have dendritic-fractal morphologies, interdigitate and reach sizes of tens of micrometers. The dendritic-fractal crystals are twinned. At the site of nucleation, twinned crystals consist of minute fibrils. With distance away from the nucleation-site, fibrils evolve to bundles of crystallographically well co-oriented nanofibrils and to, twinned, platy-blade-shaped crystals that seam outer shell surfaces. The morphological nanofibril axis is the crystallographic c-axis, both are perpendicular to shell vault. The nanofibrillar calcite is polysynthetically twinned according to the 60°/[100] (= m/{001}) twin law. We demonstrate for the twinned, fractal-dendritic, crystals formation at high supersaturation and growth through crystal competition. We show also that c-axis-alignment is already induced by biopolymers of the POS and is not simply a consequence of growth competition. We discuss determinants that lead to rotaliid calcite formation. |
first_indexed | 2024-04-10T15:44:18Z |
format | Article |
id | doaj.art-8394007078dd4476bd9e686c526f01aa |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-04-10T15:44:18Z |
publishDate | 2023-02-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-8394007078dd4476bd9e686c526f01aa2023-02-12T12:11:33ZengNature PortfolioScientific Reports2045-23222023-02-0113111910.1038/s41598-022-25082-9The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calciteJ. Lastam0E. Griesshaber1X. Yin2U. Rupp3I. Sánchez-Almazo4M. Heß5P. Walther6A. Checa7W. W. Schmahl8Forschungszentrum Jülich, Institut für Energie und Klimaforschung, IEK-2Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität MünchenDepartment für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität MünchenZentrale Einrichtung Elektronenmikroskopie, Universität UlmCentro de Instrumentación Científica, Universidad de GranadaBiozentrum LMU MünchenZentrale Einrichtung Elektronenmikroskopie, Universität UlmDepartamento de Estratigrafía y Paleontología, Universidad de GranadaDepartment für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität MünchenAbstract Diversification of biocrystal arrangements, incorporation of biopolymers at many scale levels and hierarchical architectures are keys for biomaterial optimization. The planktonic rotaliid foraminifer Pulleniatina obliquiloculata displays in its shell a new kind of mesocrystal architecture. Shell formation starts with crystallization of a rhizopodial network, the primary organic sheet (POS). On one side of the POS, crystals consist of blocky domains of 1 μm. On the other side of the POS crystals have dendritic-fractal morphologies, interdigitate and reach sizes of tens of micrometers. The dendritic-fractal crystals are twinned. At the site of nucleation, twinned crystals consist of minute fibrils. With distance away from the nucleation-site, fibrils evolve to bundles of crystallographically well co-oriented nanofibrils and to, twinned, platy-blade-shaped crystals that seam outer shell surfaces. The morphological nanofibril axis is the crystallographic c-axis, both are perpendicular to shell vault. The nanofibrillar calcite is polysynthetically twinned according to the 60°/[100] (= m/{001}) twin law. We demonstrate for the twinned, fractal-dendritic, crystals formation at high supersaturation and growth through crystal competition. We show also that c-axis-alignment is already induced by biopolymers of the POS and is not simply a consequence of growth competition. We discuss determinants that lead to rotaliid calcite formation.https://doi.org/10.1038/s41598-022-25082-9 |
spellingShingle | J. Lastam E. Griesshaber X. Yin U. Rupp I. Sánchez-Almazo M. Heß P. Walther A. Checa W. W. Schmahl The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite Scientific Reports |
title | The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite |
title_full | The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite |
title_fullStr | The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite |
title_full_unstemmed | The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite |
title_short | The unique fibrilar to platy nano- and microstructure of twinned rotaliid foraminiferal shell calcite |
title_sort | unique fibrilar to platy nano and microstructure of twinned rotaliid foraminiferal shell calcite |
url | https://doi.org/10.1038/s41598-022-25082-9 |
work_keys_str_mv | AT jlastam theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT egriesshaber theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT xyin theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT urupp theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT isanchezalmazo theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT mheß theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT pwalther theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT acheca theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT wwschmahl theuniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT jlastam uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT egriesshaber uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT xyin uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT urupp uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT isanchezalmazo uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT mheß uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT pwalther uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT acheca uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite AT wwschmahl uniquefibrilartoplatynanoandmicrostructureoftwinnedrotaliidforaminiferalshellcalcite |