Holistic pedestrian safety assessment for average males and females
ObjectiveAn integrated assessment framework that enables holistic safety evaluations addressing vulnerable road users (VRU) is introduced and applied in the current study. The developed method enables consideration of both active and passive safety measures and distributions of real-world crash scen...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-08-01
|
Series: | Frontiers in Public Health |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpubh.2023.1199949/full |
_version_ | 1797739835664891904 |
---|---|
author | Christoph Leo Anders Fredriksson Ellen Grumert Astrid Linder Astrid Linder Martin Schachner Fredrik Tidborg Corina Klug |
author_facet | Christoph Leo Anders Fredriksson Ellen Grumert Astrid Linder Astrid Linder Martin Schachner Fredrik Tidborg Corina Klug |
author_sort | Christoph Leo |
collection | DOAJ |
description | ObjectiveAn integrated assessment framework that enables holistic safety evaluations addressing vulnerable road users (VRU) is introduced and applied in the current study. The developed method enables consideration of both active and passive safety measures and distributions of real-world crash scenario parameters.MethodsThe likelihood of a specific virtual testing scenario occurring in real life has been derived from accident databases scaled to European level. Based on pre-crash simulations, it is determined how likely it is that scenarios could be avoided by a specific Autonomous Emergency Braking (AEB) system. For the unavoidable cases, probabilities for specific collision scenarios are determined, and the injury risk for these is determined, subsequently, from in-crash simulations with the VIVA+ Human Body Models combined with the created metamodel for an average male and female model. The integrated assessment framework was applied for the holistic assessment of car-related pedestrian protection using a generic car model to assess the safety benefits of a generic AEB system combined with current passive safety structures.ResultsIn total, 61,914 virtual testing scenarios have been derived from the different car-pedestrian cases based on real-world crash scenario parameters. Considering the occurrence probability of the virtual testing scenarios, by implementing an AEB, a total crash risk reduction of 81.70% was achieved based on pre-crash simulations. It was shown that 50 in-crash simulations per load case are sufficient to create a metamodel for injury prediction. For the in-crash simulations with the generic vehicle, it was also shown that the injury risk can be reduced by implementing an AEB, as compared to the baseline scenarios. Moreover, as seen in the unavoidable cases, the injury risk for the average male and female is the same for brain injuries and femoral shaft fractures. The average male has a higher risk of skull fractures and fractures of more than three ribs compared to the average female. The average female has a higher risk of proximal femoral fractures than the average male.ConclusionsA novel methodology was developed which allows for movement away from the exclusive use of standard-load case assessments, thus helping to bridge the gap between active and passive safety evaluations. |
first_indexed | 2024-03-12T14:03:51Z |
format | Article |
id | doaj.art-8398865bd01d4163a7f0d4b8f8caf8a5 |
institution | Directory Open Access Journal |
issn | 2296-2565 |
language | English |
last_indexed | 2024-03-12T14:03:51Z |
publishDate | 2023-08-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Public Health |
spelling | doaj.art-8398865bd01d4163a7f0d4b8f8caf8a52023-08-21T17:14:51ZengFrontiers Media S.A.Frontiers in Public Health2296-25652023-08-011110.3389/fpubh.2023.11999491199949Holistic pedestrian safety assessment for average males and femalesChristoph Leo0Anders Fredriksson1Ellen Grumert2Astrid Linder3Astrid Linder4Martin Schachner5Fredrik Tidborg6Corina Klug7Vehicle Safety Institute, Graz University of Technology, Graz, AustriaVolvo Car Corporation, Torslanda HABVS-VAK, Gothenburg, SwedenSwedish National Road and Transport Research Institute, VTI, Gothenburg, SwedenSwedish National Road and Transport Research Institute, VTI, Gothenburg, SwedenMechanics and Maritime Science, Chalmers University, Gothenburg, SwedenVehicle Safety Institute, Graz University of Technology, Graz, AustriaVolvo Car Corporation, Torslanda HABVS-VAK, Gothenburg, SwedenVehicle Safety Institute, Graz University of Technology, Graz, AustriaObjectiveAn integrated assessment framework that enables holistic safety evaluations addressing vulnerable road users (VRU) is introduced and applied in the current study. The developed method enables consideration of both active and passive safety measures and distributions of real-world crash scenario parameters.MethodsThe likelihood of a specific virtual testing scenario occurring in real life has been derived from accident databases scaled to European level. Based on pre-crash simulations, it is determined how likely it is that scenarios could be avoided by a specific Autonomous Emergency Braking (AEB) system. For the unavoidable cases, probabilities for specific collision scenarios are determined, and the injury risk for these is determined, subsequently, from in-crash simulations with the VIVA+ Human Body Models combined with the created metamodel for an average male and female model. The integrated assessment framework was applied for the holistic assessment of car-related pedestrian protection using a generic car model to assess the safety benefits of a generic AEB system combined with current passive safety structures.ResultsIn total, 61,914 virtual testing scenarios have been derived from the different car-pedestrian cases based on real-world crash scenario parameters. Considering the occurrence probability of the virtual testing scenarios, by implementing an AEB, a total crash risk reduction of 81.70% was achieved based on pre-crash simulations. It was shown that 50 in-crash simulations per load case are sufficient to create a metamodel for injury prediction. For the in-crash simulations with the generic vehicle, it was also shown that the injury risk can be reduced by implementing an AEB, as compared to the baseline scenarios. Moreover, as seen in the unavoidable cases, the injury risk for the average male and female is the same for brain injuries and femoral shaft fractures. The average male has a higher risk of skull fractures and fractures of more than three ribs compared to the average female. The average female has a higher risk of proximal femoral fractures than the average male.ConclusionsA novel methodology was developed which allows for movement away from the exclusive use of standard-load case assessments, thus helping to bridge the gap between active and passive safety evaluations.https://www.frontiersin.org/articles/10.3389/fpubh.2023.1199949/fullactive safetyHBMholistic assessmentoverall injury assessmentpassive safetypedestrian |
spellingShingle | Christoph Leo Anders Fredriksson Ellen Grumert Astrid Linder Astrid Linder Martin Schachner Fredrik Tidborg Corina Klug Holistic pedestrian safety assessment for average males and females Frontiers in Public Health active safety HBM holistic assessment overall injury assessment passive safety pedestrian |
title | Holistic pedestrian safety assessment for average males and females |
title_full | Holistic pedestrian safety assessment for average males and females |
title_fullStr | Holistic pedestrian safety assessment for average males and females |
title_full_unstemmed | Holistic pedestrian safety assessment for average males and females |
title_short | Holistic pedestrian safety assessment for average males and females |
title_sort | holistic pedestrian safety assessment for average males and females |
topic | active safety HBM holistic assessment overall injury assessment passive safety pedestrian |
url | https://www.frontiersin.org/articles/10.3389/fpubh.2023.1199949/full |
work_keys_str_mv | AT christophleo holisticpedestriansafetyassessmentforaveragemalesandfemales AT andersfredriksson holisticpedestriansafetyassessmentforaveragemalesandfemales AT ellengrumert holisticpedestriansafetyassessmentforaveragemalesandfemales AT astridlinder holisticpedestriansafetyassessmentforaveragemalesandfemales AT astridlinder holisticpedestriansafetyassessmentforaveragemalesandfemales AT martinschachner holisticpedestriansafetyassessmentforaveragemalesandfemales AT fredriktidborg holisticpedestriansafetyassessmentforaveragemalesandfemales AT corinaklug holisticpedestriansafetyassessmentforaveragemalesandfemales |