Low-Power Embedded System for Gait Classification Using Neural Networks
Abnormal foot postures can be measured during the march by plantar pressures in both dynamic and static conditions. These detections may prevent possible injuries to the lower limbs like fractures, ankle sprain or plantar fasciitis. This information can be obtained by an embedded instrumented insole...
Principais autores: | Francisco Luna-Perejón, Manuel Domínguez-Morales, Daniel Gutiérrez-Galán, Antón Civit-Balcells |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
MDPI AG
2020-05-01
|
coleção: | Journal of Low Power Electronics and Applications |
Assuntos: | |
Acesso em linha: | https://www.mdpi.com/2079-9268/10/2/14 |
Registros relacionados
-
AnkFall—Falls, Falling Risks and Daily-Life Activities Dataset with an Ankle-Placed Accelerometer and Training Using Recurrent Neural Networks
por: Francisco Luna-Perejón, et al.
Publicado em: (2021-03-01) -
Implementing Gait Kinematic Trajectory Forecasting Models on an Embedded System
por: Madina Shayne, et al.
Publicado em: (2024-04-01) -
Classification of skin blemishes with cell phone images using deep learning techniques
por: José Antonio Rangel-Ramos, et al.
Publicado em: (2024-04-01) -
Deep Learning System for COVID-19 Diagnosis Aid Using X-ray Pulmonary Images
por: Javier Civit-Masot, et al.
Publicado em: (2020-07-01) -
Wildlife Monitoring on the Edge: A Performance Evaluation of Embedded Neural Networks on Microcontrollers for Animal Behavior Classification
por: Juan P. Dominguez-Morales, et al.
Publicado em: (2021-04-01)