Variability in spectral characteristics of trampled high-mountain grasslands

The goal of the paper is a presentation of field remote sensing methods for the analysis of the trampled plants of a highly protected mountain meadow ecosystem (M&B UNESCO Reserve and one of the most important Polish National Parks). The research area covers a core part of the Western Tatras - t...

Full description

Bibliographic Details
Main Authors: Kycko Marlena, Zagajewski Bogdan, Kozłowska Anna
Format: Article
Language:English
Published: Sciendo 2014-06-01
Series:Miscellanea Geographica: Regional Studies on Development
Subjects:
Online Access:https://doi.org/10.2478/mgrsd-2014-0003
Description
Summary:The goal of the paper is a presentation of field remote sensing methods for the analysis of the trampled plants of a highly protected mountain meadow ecosystem (M&B UNESCO Reserve and one of the most important Polish National Parks). The research area covers a core part of the Western Tatras - the Gąsienicowa Valley and Kasprowy Wierch summit, which are among the most visited destinations of the Polish Tatras. The research method is based on field hyperspectral measurements, using the ASD FieldSpec 3 spectrometer, on the dominant plant species of alpine swards. Sampling sites were located on trampled areas (next to trails) and reference plots, with the same species, but located more than 10 m from the trail (where the probability of trampling was very low, but the same composition of analysed plants). In each case, homogenous plots with a domination of one plant species were investigated. Based on the hyperspectral measurements, spectral characteristics as well as vegetation indices were analysed with the ANOVA statistical test. This indicated a varied resistance to trampling of the studied plant species. The analysis of vegetation indices enabled the selection of those groups which are the most useful for research into mountain vegetation condition: the broadband greenness group; the narrowband greenness group, measuring chlorophyll content and cell structure; and the canopy water content group. The results of the analyses show that vegetation of the High Tatras is characterised by optimal ranges of remote sensing indices. Only plants located nearest to the trails were in a worse condition (chlorophyll and water content was lower for the reference targets). These differences are statistically significant, but the measured values indicate a good condition of vegetation along trampled trails, within the range of optimum plant characteristics.
ISSN:2084-6118