Summary: | Climate change has highlighted a need to transition to more sustainable forms of transportation. Electric vehicles (EVs) and hybrid electric vehicles (HEVs) offer a promising alternative to conventional gasoline powered vehicles. However, advancements in power electronics and advanced control systems have made the implementation of high performance traction drives for EVs and HEVs easy. In this paper, a novel sliding mode control model reference adaptive system (SMC-MRAS) speed estimator in traction drive control application is presented. However, due to the unpredictable operational uncertainties of the machine parameters and unmodelled non-linear dynamics, the proportional-integral (PI)-MRAS may not produce a satisfactory performance. The Proposed estimator eliminates the PI controller employed in the conventional MRAS. This method utilizes two loops and generates two different error signals from the rotor flux and motor torques. The stability and dynamics of the SMC law are obtained through the Lyapunov theory. The potential of the proposed SMC-MRAS methodology is simulated and experimentally validated for an electric vehicle application. Matlab-Simulink environment is developed and proposed scheme is employed on indirect vector control method. However, for the experimental validation, the dSPACE 4011 R & D controller board was utilized. Furthermore, the SMC-MRAS performance is differentiated with PI-MRAS for speed regulation performance, tracking and estimation error, as well as the fast minimization of the error signal. The results of the proposed scheme illustrate the enhanced speed estimation, load disturbance rejection ability and fast error dynamics.
|