PAE: Portable Appearance Extension for Multiple Object Detection and Tracking in Traffic Scenes

Multi-object tracking (MOT) is an important field in computer vision that provides a critical understanding of video analysis in various applications, such as vehicle tracking in intelligent transportation systems (ITS). Several deep learning-based approaches have been introduced to basic motion and...

Full description

Bibliographic Details
Main Authors: Ibrahim Soliman Mohamed, Lim Kim Chuan
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9737499/
Description
Summary:Multi-object tracking (MOT) is an important field in computer vision that provides a critical understanding of video analysis in various applications, such as vehicle tracking in intelligent transportation systems (ITS). Several deep learning-based approaches have been introduced to basic motion and IoU trackers by extracting appearance features to assist in challenging situations such as lossy detection and occlusion. This study proposes a portable appearance extension (PAE) for single-stage object detection to jointly detect and extract appearance embeddings using a shared model. Furthermore, a novel training framework with a single image and without re-identification annotations is presented using an augmentation module, saving a tremendous amount of human labeling effort and increasing the real-world application adoption rate. Using UA-DETRAC dataset, RetinaNet-PAE and SSD-PAE achieve comparable results with current state-of-the-art models, where RetinaNet-PAE prioritizes detection and tracking performance with a 58.0% HOTA score and 4 FPS. In contrast, SSD-PAE prioritizes latency performance with a 47.3% HOTA score and 40 FPS.
ISSN:2169-3536