An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers
Abstract The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers...
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-12-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-023-43932-6 |
_version_ | 1797376916222640128 |
---|---|
author | Peter T. H. Pang Tim Dietrich Michael W. Coughlin Mattia Bulla Ingo Tews Mouza Almualla Tyler Barna Ramodgwendé Weizmann Kiendrebeogo Nina Kunert Gargi Mansingh Brandon Reed Niharika Sravan Andrew Toivonen Sarah Antier Robert O. VandenBerg Jack Heinzel Vsevolod Nedora Pouyan Salehi Ritwik Sharma Rahul Somasundaram Chris Van Den Broeck |
author_facet | Peter T. H. Pang Tim Dietrich Michael W. Coughlin Mattia Bulla Ingo Tews Mouza Almualla Tyler Barna Ramodgwendé Weizmann Kiendrebeogo Nina Kunert Gargi Mansingh Brandon Reed Niharika Sravan Andrew Toivonen Sarah Antier Robert O. VandenBerg Jack Heinzel Vsevolod Nedora Pouyan Salehi Ritwik Sharma Rahul Somasundaram Chris Van Den Broeck |
author_sort | Peter T. H. Pang |
collection | DOAJ |
description | Abstract The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4M ⊙ neutron star to be $$R=11.9{8}_{-0.40}^{+0.35}$$ R = 11.9 8 − 0.40 + 0.35 km. |
first_indexed | 2024-03-08T19:45:29Z |
format | Article |
id | doaj.art-83e0219b0d0541b699d4f33d76fa54fd |
institution | Directory Open Access Journal |
issn | 2041-1723 |
language | English |
last_indexed | 2024-03-08T19:45:29Z |
publishDate | 2023-12-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj.art-83e0219b0d0541b699d4f33d76fa54fd2023-12-24T12:22:44ZengNature PortfolioNature Communications2041-17232023-12-0114111310.1038/s41467-023-43932-6An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergersPeter T. H. Pang0Tim Dietrich1Michael W. Coughlin2Mattia Bulla3Ingo Tews4Mouza Almualla5Tyler Barna6Ramodgwendé Weizmann Kiendrebeogo7Nina Kunert8Gargi Mansingh9Brandon Reed10Niharika Sravan11Andrew Toivonen12Sarah Antier13Robert O. VandenBerg14Jack Heinzel15Vsevolod Nedora16Pouyan Salehi17Ritwik Sharma18Rahul Somasundaram19Chris Van Den Broeck20NikhefInstitut für Physik und Astronomie, Universität PotsdamSchool of Physics and Astronomy, University of MinnesotaThe Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNovaTheoretical Division, Los Alamos National LaboratoryDepartment of Physics, American University of SharjahSchool of Physics and Astronomy, University of MinnesotaLaboratoire de Physique et de Chimie de l’Environnement, Université Joseph KI-ZERBOInstitut für Physik und Astronomie, Universität PotsdamSchool of Physics and Astronomy, University of MinnesotaSchool of Physics and Astronomy, University of MinnesotaDepartment of Physics, Drexel UniversitySchool of Physics and Astronomy, University of MinnesotaObservatoire de la Côte d’Azur, Université Côte d’Azur, CNRSSchool of Physics and Astronomy, University of MinnesotaDepartment of Physics, Massachusetts Institute of TechnologyMax Planck Institute for Gravitational Physics (Albert Einstein Institute)Institut für Physik und Astronomie, Universität PotsdamDepartment of Physics, Deshbandhu College, University of DelhiTheoretical Division, Los Alamos National LaboratoryNikhefAbstract The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4M ⊙ neutron star to be $$R=11.9{8}_{-0.40}^{+0.35}$$ R = 11.9 8 − 0.40 + 0.35 km.https://doi.org/10.1038/s41467-023-43932-6 |
spellingShingle | Peter T. H. Pang Tim Dietrich Michael W. Coughlin Mattia Bulla Ingo Tews Mouza Almualla Tyler Barna Ramodgwendé Weizmann Kiendrebeogo Nina Kunert Gargi Mansingh Brandon Reed Niharika Sravan Andrew Toivonen Sarah Antier Robert O. VandenBerg Jack Heinzel Vsevolod Nedora Pouyan Salehi Ritwik Sharma Rahul Somasundaram Chris Van Den Broeck An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers Nature Communications |
title | An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers |
title_full | An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers |
title_fullStr | An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers |
title_full_unstemmed | An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers |
title_short | An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers |
title_sort | updated nuclear physics and multi messenger astrophysics framework for binary neutron star mergers |
url | https://doi.org/10.1038/s41467-023-43932-6 |
work_keys_str_mv | AT peterthpang anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT timdietrich anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT michaelwcoughlin anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT mattiabulla anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT ingotews anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT mouzaalmualla anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT tylerbarna anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT ramodgwendeweizmannkiendrebeogo anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT ninakunert anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT gargimansingh anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT brandonreed anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT niharikasravan anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT andrewtoivonen anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT sarahantier anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT robertovandenberg anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT jackheinzel anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT vsevolodnedora anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT pouyansalehi anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT ritwiksharma anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT rahulsomasundaram anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT chrisvandenbroeck anupdatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT peterthpang updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT timdietrich updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT michaelwcoughlin updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT mattiabulla updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT ingotews updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT mouzaalmualla updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT tylerbarna updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT ramodgwendeweizmannkiendrebeogo updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT ninakunert updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT gargimansingh updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT brandonreed updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT niharikasravan updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT andrewtoivonen updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT sarahantier updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT robertovandenberg updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT jackheinzel updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT vsevolodnedora updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT pouyansalehi updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT ritwiksharma updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT rahulsomasundaram updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers AT chrisvandenbroeck updatednuclearphysicsandmultimessengerastrophysicsframeworkforbinaryneutronstarmergers |