Summary: | Low response rate and recurrence are common issues in lung cancer; thus, identifying a potential compound for these patients is essential. Utilizing an in silico screening method, we identified withaferin A (WA), a cell-permeable steroidal lactone initially extracted from <i>Withania somnifera</i>, as a potential anti−lung cancer and anti−lung cancer stem-like cell (CSC) agent. First, we demonstrated that WA exhibited potent cytotoxicity in several lung cancer cells, as evidenced by low IC<sub>50</sub> values. WA concurrently induced autophagy and apoptosis and the activation of reactive oxygen species (ROS), which plays an upstream role in mediating WA-elicited effects. The increase in p62 indicated that WA may modulate the autophagy flux followed by apoptosis. In vivo research also demonstrated the anti-tumor effect of WA treatment. We subsequently demonstrated that WA could inhibit the growth of lung CSCs, decrease side population cells, and inhibit lung cancer spheroid-forming capacity, at least through downregulation of mTOR/STAT3 signaling. Furthermore, the combination of WA and chemotherapeutic drugs, including cisplatin and pemetrexed, exerted synergistic effects on the inhibition of epidermal growth factor receptor (EGFR) wild-type lung cancer cell viability. In addition, WA can further enhance the cytotoxic effect of cisplatin in lung CSCs. Therefore, WA alone or in combination with standard chemotherapy is a potential treatment option for EGFR wild-type lung cancer and may decrease the occurrence of cisplatin resistance by inhibiting lung CSCs.
|