The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)

<p>We report a 40-year history of SF<span class="inline-formula"><sub>6</sub></span> atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples, to determine emission est...

Full description

Bibliographic Details
Main Authors: P. G. Simmonds, M. Rigby, A. J. Manning, S. Park, K. M. Stanley, A. McCulloch, S. Henne, F. Graziosi, M. Maione, J. Arduini, S. Reimann, M. K. Vollmer, J. Mühle, S. O'Doherty, D. Young, P. B. Krummel, P. J. Fraser, R. F. Weiss, P. K. Salameh, C. M. Harth, M.-K. Park, H. Park, T. Arnold, C. Rennick, L. P. Steele, B. Mitrevski, R. H. J. Wang, R. G. Prinn
Format: Article
Language:English
Published: Copernicus Publications 2020-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/20/7271/2020/acp-20-7271-2020.pdf
_version_ 1818304371604062208
author P. G. Simmonds
M. Rigby
A. J. Manning
S. Park
K. M. Stanley
K. M. Stanley
A. McCulloch
S. Henne
F. Graziosi
M. Maione
J. Arduini
S. Reimann
M. K. Vollmer
J. Mühle
S. O'Doherty
D. Young
P. B. Krummel
P. J. Fraser
R. F. Weiss
P. K. Salameh
C. M. Harth
M.-K. Park
H. Park
T. Arnold
T. Arnold
C. Rennick
L. P. Steele
B. Mitrevski
R. H. J. Wang
R. G. Prinn
author_facet P. G. Simmonds
M. Rigby
A. J. Manning
S. Park
K. M. Stanley
K. M. Stanley
A. McCulloch
S. Henne
F. Graziosi
M. Maione
J. Arduini
S. Reimann
M. K. Vollmer
J. Mühle
S. O'Doherty
D. Young
P. B. Krummel
P. J. Fraser
R. F. Weiss
P. K. Salameh
C. M. Harth
M.-K. Park
H. Park
T. Arnold
T. Arnold
C. Rennick
L. P. Steele
B. Mitrevski
R. H. J. Wang
R. G. Prinn
author_sort P. G. Simmonds
collection DOAJ
description <p>We report a 40-year history of SF<span class="inline-formula"><sub>6</sub></span> atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples, to determine emission estimates from 1978 to 2018. Previously we reported a global emission rate of <span class="inline-formula">7.3±0.6</span>&thinsp;Gg&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2008 and over the past decade emissions have continued to increase by about 24&thinsp;% to <span class="inline-formula">9.04±0.35</span>&thinsp;Gg&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2018. We show that changing patterns in SF<span class="inline-formula"><sub>6</sub></span> consumption from developed (Kyoto Protocol Annex-1) to developing countries (non-Annex-1) and the rapid global expansion of the electric power industry, mainly in Asia, have increased the demand for SF<span class="inline-formula"><sub>6</sub></span>-insulated switchgear, circuit breakers, and transformers. The large bank of SF<span class="inline-formula"><sub>6</sub></span> sequestered in this electrical equipment provides a substantial source of emissions from maintenance, replacement, and continuous leakage. Other emissive sources of SF<span class="inline-formula"><sub>6</sub></span> occur from the magnesium, aluminium, and electronics industries as well as more minor industrial applications. More recently, reported emissions, including those from electrical equipment and metal industries, primarily in the Annex-1 countries, have declined steadily through substitution of alternative blanketing gases and technological improvements in less emissive equipment and more efficient industrial practices. Nevertheless, there are still demands for SF<span class="inline-formula"><sub>6</sub></span> in Annex-1 countries due to economic growth, as well as continuing emissions from older equipment and additional emissions from newly installed SF<span class="inline-formula"><sub>6</sub></span>-insulated electrical equipment, although at low emission rates. In addition, in the non-Annex-1 countries, SF<span class="inline-formula"><sub>6</sub></span> emissions have increased due to an expansion<span id="page7272"/> in the growth of the electrical power, metal, and electronics industries to support their continuing development.</p> <p>There is an annual difference of 2.5–5&thinsp;Gg&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (1990–2018) between our modelled top-down emissions and the UNFCCC-reported bottom-up emissions (United Nations Framework Convention on Climate Change), which we attempt to reconcile through analysis of the potential contribution of emissions from the various industrial applications which use SF<span class="inline-formula"><sub>6</sub></span>. We also investigate regional emissions in East Asia (China, S. Korea) and western Europe and their respective contributions to the global atmospheric SF<span class="inline-formula"><sub>6</sub></span> inventory. On an average annual basis, our estimated emissions from the whole of China are approximately 10 times greater than emissions from western Europe. In 2018, our modelled Chinese and western European emissions accounted for <span class="inline-formula">∼36</span>&thinsp;% and 3.1&thinsp;%, respectively, of our global SF<span class="inline-formula"><sub>6</sub></span> emissions estimate.</p>
first_indexed 2024-12-13T06:09:38Z
format Article
id doaj.art-840c637d99514a90b52c384dc9185c16
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-13T06:09:38Z
publishDate 2020-06-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-840c637d99514a90b52c384dc9185c162022-12-21T23:57:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-06-01207271729010.5194/acp-20-7271-2020The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)P. G. Simmonds0M. Rigby1A. J. Manning2S. Park3K. M. Stanley4K. M. Stanley5A. McCulloch6S. Henne7F. Graziosi8M. Maione9J. Arduini10S. Reimann11M. K. Vollmer12J. Mühle13S. O'Doherty14D. Young15P. B. Krummel16P. J. Fraser17R. F. Weiss18P. K. Salameh19C. M. Harth20M.-K. Park21H. Park22T. Arnold23T. Arnold24C. Rennick25L. P. Steele26B. Mitrevski27R. H. J. Wang28R. G. Prinn29School of Chemistry, University of Bristol, Bristol, UKSchool of Chemistry, University of Bristol, Bristol, UKMet Office Hadley Centre, Exeter, UKDepartment of Oceanography, Kyungpook National University, Daegu, Republic of KoreaSchool of Chemistry, University of Bristol, Bristol, UKInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt, GermanySchool of Chemistry, University of Bristol, Bristol, UKSwiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution and Environmental Technology (Empa), Dübendorf, SwitzerlandDepartment of Pure and Applied Sciences (DiSPeA) of the University of Urbino and Institute of Atmospheric Sciences and Climate (ISAC) of the National Research Council (CNR), Bologna, ItalyDepartment of Pure and Applied Sciences (DiSPeA) of the University of Urbino and Institute of Atmospheric Sciences and Climate (ISAC) of the National Research Council (CNR), Bologna, ItalyDepartment of Pure and Applied Sciences (DiSPeA) of the University of Urbino and Institute of Atmospheric Sciences and Climate (ISAC) of the National Research Council (CNR), Bologna, ItalySwiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution and Environmental Technology (Empa), Dübendorf, SwitzerlandSwiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution and Environmental Technology (Empa), Dübendorf, SwitzerlandScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, California, USASchool of Chemistry, University of Bristol, Bristol, UKSchool of Chemistry, University of Bristol, Bristol, UKClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, AustraliaScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, California, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, California, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, California, USAKyungpook Institute of Oceanography, Kyungpook National University, Daegu, Republic of KoreaKyungpook Institute of Oceanography, Kyungpook National University, Daegu, Republic of KoreaNational Physical Laboratory, Teddington, UKSchool of GeoSciences, The University of Edinburgh, Edinburgh, UKNational Physical Laboratory, Teddington, UKClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, AustraliaSchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USACenter for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA<p>We report a 40-year history of SF<span class="inline-formula"><sub>6</sub></span> atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples, to determine emission estimates from 1978 to 2018. Previously we reported a global emission rate of <span class="inline-formula">7.3±0.6</span>&thinsp;Gg&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2008 and over the past decade emissions have continued to increase by about 24&thinsp;% to <span class="inline-formula">9.04±0.35</span>&thinsp;Gg&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> in 2018. We show that changing patterns in SF<span class="inline-formula"><sub>6</sub></span> consumption from developed (Kyoto Protocol Annex-1) to developing countries (non-Annex-1) and the rapid global expansion of the electric power industry, mainly in Asia, have increased the demand for SF<span class="inline-formula"><sub>6</sub></span>-insulated switchgear, circuit breakers, and transformers. The large bank of SF<span class="inline-formula"><sub>6</sub></span> sequestered in this electrical equipment provides a substantial source of emissions from maintenance, replacement, and continuous leakage. Other emissive sources of SF<span class="inline-formula"><sub>6</sub></span> occur from the magnesium, aluminium, and electronics industries as well as more minor industrial applications. More recently, reported emissions, including those from electrical equipment and metal industries, primarily in the Annex-1 countries, have declined steadily through substitution of alternative blanketing gases and technological improvements in less emissive equipment and more efficient industrial practices. Nevertheless, there are still demands for SF<span class="inline-formula"><sub>6</sub></span> in Annex-1 countries due to economic growth, as well as continuing emissions from older equipment and additional emissions from newly installed SF<span class="inline-formula"><sub>6</sub></span>-insulated electrical equipment, although at low emission rates. In addition, in the non-Annex-1 countries, SF<span class="inline-formula"><sub>6</sub></span> emissions have increased due to an expansion<span id="page7272"/> in the growth of the electrical power, metal, and electronics industries to support their continuing development.</p> <p>There is an annual difference of 2.5–5&thinsp;Gg&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (1990–2018) between our modelled top-down emissions and the UNFCCC-reported bottom-up emissions (United Nations Framework Convention on Climate Change), which we attempt to reconcile through analysis of the potential contribution of emissions from the various industrial applications which use SF<span class="inline-formula"><sub>6</sub></span>. We also investigate regional emissions in East Asia (China, S. Korea) and western Europe and their respective contributions to the global atmospheric SF<span class="inline-formula"><sub>6</sub></span> inventory. On an average annual basis, our estimated emissions from the whole of China are approximately 10 times greater than emissions from western Europe. In 2018, our modelled Chinese and western European emissions accounted for <span class="inline-formula">∼36</span>&thinsp;% and 3.1&thinsp;%, respectively, of our global SF<span class="inline-formula"><sub>6</sub></span> emissions estimate.</p>https://www.atmos-chem-phys.net/20/7271/2020/acp-20-7271-2020.pdf
spellingShingle P. G. Simmonds
M. Rigby
A. J. Manning
S. Park
K. M. Stanley
K. M. Stanley
A. McCulloch
S. Henne
F. Graziosi
M. Maione
J. Arduini
S. Reimann
M. K. Vollmer
J. Mühle
S. O'Doherty
D. Young
P. B. Krummel
P. J. Fraser
R. F. Weiss
P. K. Salameh
C. M. Harth
M.-K. Park
H. Park
T. Arnold
T. Arnold
C. Rennick
L. P. Steele
B. Mitrevski
R. H. J. Wang
R. G. Prinn
The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)
Atmospheric Chemistry and Physics
title The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)
title_full The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)
title_fullStr The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)
title_full_unstemmed The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)
title_short The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)
title_sort increasing atmospheric burden of the greenhouse gas sulfur hexafluoride sf sub 6 sub
url https://www.atmos-chem-phys.net/20/7271/2020/acp-20-7271-2020.pdf
work_keys_str_mv AT pgsimmonds theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT mrigby theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT ajmanning theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT spark theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT kmstanley theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT kmstanley theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT amcculloch theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT shenne theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT fgraziosi theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT mmaione theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT jarduini theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT sreimann theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT mkvollmer theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT jmuhle theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT sodoherty theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT dyoung theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT pbkrummel theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT pjfraser theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT rfweiss theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT pksalameh theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT cmharth theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT mkpark theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT hpark theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT tarnold theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT tarnold theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT crennick theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT lpsteele theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT bmitrevski theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT rhjwang theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT rgprinn theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT pgsimmonds increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT mrigby increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT ajmanning increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT spark increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT kmstanley increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT kmstanley increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT amcculloch increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT shenne increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT fgraziosi increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT mmaione increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT jarduini increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT sreimann increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT mkvollmer increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT jmuhle increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT sodoherty increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT dyoung increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT pbkrummel increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT pjfraser increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT rfweiss increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT pksalameh increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT cmharth increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT mkpark increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT hpark increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT tarnold increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT tarnold increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT crennick increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT lpsteele increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT bmitrevski increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT rhjwang increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub
AT rgprinn increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub