The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)
<p>We report a 40-year history of SF<span class="inline-formula"><sub>6</sub></span> atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples, to determine emission est...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-06-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/20/7271/2020/acp-20-7271-2020.pdf |
_version_ | 1818304371604062208 |
---|---|
author | P. G. Simmonds M. Rigby A. J. Manning S. Park K. M. Stanley K. M. Stanley A. McCulloch S. Henne F. Graziosi M. Maione J. Arduini S. Reimann M. K. Vollmer J. Mühle S. O'Doherty D. Young P. B. Krummel P. J. Fraser R. F. Weiss P. K. Salameh C. M. Harth M.-K. Park H. Park T. Arnold T. Arnold C. Rennick L. P. Steele B. Mitrevski R. H. J. Wang R. G. Prinn |
author_facet | P. G. Simmonds M. Rigby A. J. Manning S. Park K. M. Stanley K. M. Stanley A. McCulloch S. Henne F. Graziosi M. Maione J. Arduini S. Reimann M. K. Vollmer J. Mühle S. O'Doherty D. Young P. B. Krummel P. J. Fraser R. F. Weiss P. K. Salameh C. M. Harth M.-K. Park H. Park T. Arnold T. Arnold C. Rennick L. P. Steele B. Mitrevski R. H. J. Wang R. G. Prinn |
author_sort | P. G. Simmonds |
collection | DOAJ |
description | <p>We report a 40-year history of SF<span class="inline-formula"><sub>6</sub></span> atmospheric mole fractions
measured at the Advanced Global Atmospheric Gases Experiment (AGAGE)
monitoring sites, combined with archived air samples, to determine emission
estimates from 1978 to 2018. Previously we reported a global emission rate of
<span class="inline-formula">7.3±0.6</span> Gg yr<span class="inline-formula"><sup>−1</sup></span> in 2008 and over the past decade
emissions have continued to increase by about 24 % to <span class="inline-formula">9.04±0.35</span> Gg yr<span class="inline-formula"><sup>−1</sup></span> in 2018. We show that changing patterns in SF<span class="inline-formula"><sub>6</sub></span> consumption from developed (Kyoto Protocol Annex-1) to developing countries
(non-Annex-1) and the rapid global expansion of the electric power industry, mainly in Asia, have increased the demand for SF<span class="inline-formula"><sub>6</sub></span>-insulated switchgear, circuit breakers, and transformers. The large bank of SF<span class="inline-formula"><sub>6</sub></span> sequestered in this electrical equipment provides a substantial source of emissions from maintenance, replacement, and continuous leakage. Other emissive sources of SF<span class="inline-formula"><sub>6</sub></span> occur from the magnesium, aluminium, and electronics industries as well as more minor industrial applications. More recently, reported emissions, including those from electrical equipment and metal industries, primarily in the Annex-1 countries, have declined steadily through substitution of alternative blanketing gases and technological improvements in less emissive equipment and more efficient industrial practices. Nevertheless, there are still demands for SF<span class="inline-formula"><sub>6</sub></span> in Annex-1 countries due to economic growth, as well as continuing emissions from older equipment and additional emissions from newly installed SF<span class="inline-formula"><sub>6</sub></span>-insulated electrical equipment, although at low emission rates. In addition, in the non-Annex-1 countries, SF<span class="inline-formula"><sub>6</sub></span> emissions have increased due to an expansion<span id="page7272"/> in the growth of the electrical power, metal, and electronics industries to support their continuing development.</p>
<p>There is an annual difference of 2.5–5 Gg yr<span class="inline-formula"><sup>−1</sup></span> (1990–2018) between
our modelled top-down emissions and the UNFCCC-reported bottom-up emissions (United Nations Framework Convention on Climate Change), which we attempt to reconcile through analysis of the potential contribution of emissions from the various industrial applications which use SF<span class="inline-formula"><sub>6</sub></span>. We also investigate regional emissions in East Asia (China, S. Korea) and western Europe and their respective contributions to the global atmospheric SF<span class="inline-formula"><sub>6</sub></span> inventory. On an average annual basis, our estimated emissions from the whole of China are approximately 10 times greater than emissions from western Europe. In 2018, our modelled Chinese and western European emissions accounted for <span class="inline-formula">∼36</span> % and 3.1 %, respectively, of our global SF<span class="inline-formula"><sub>6</sub></span> emissions estimate.</p> |
first_indexed | 2024-12-13T06:09:38Z |
format | Article |
id | doaj.art-840c637d99514a90b52c384dc9185c16 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-13T06:09:38Z |
publishDate | 2020-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-840c637d99514a90b52c384dc9185c162022-12-21T23:57:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-06-01207271729010.5194/acp-20-7271-2020The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>)P. G. Simmonds0M. Rigby1A. J. Manning2S. Park3K. M. Stanley4K. M. Stanley5A. McCulloch6S. Henne7F. Graziosi8M. Maione9J. Arduini10S. Reimann11M. K. Vollmer12J. Mühle13S. O'Doherty14D. Young15P. B. Krummel16P. J. Fraser17R. F. Weiss18P. K. Salameh19C. M. Harth20M.-K. Park21H. Park22T. Arnold23T. Arnold24C. Rennick25L. P. Steele26B. Mitrevski27R. H. J. Wang28R. G. Prinn29School of Chemistry, University of Bristol, Bristol, UKSchool of Chemistry, University of Bristol, Bristol, UKMet Office Hadley Centre, Exeter, UKDepartment of Oceanography, Kyungpook National University, Daegu, Republic of KoreaSchool of Chemistry, University of Bristol, Bristol, UKInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt, GermanySchool of Chemistry, University of Bristol, Bristol, UKSwiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution and Environmental Technology (Empa), Dübendorf, SwitzerlandDepartment of Pure and Applied Sciences (DiSPeA) of the University of Urbino and Institute of Atmospheric Sciences and Climate (ISAC) of the National Research Council (CNR), Bologna, ItalyDepartment of Pure and Applied Sciences (DiSPeA) of the University of Urbino and Institute of Atmospheric Sciences and Climate (ISAC) of the National Research Council (CNR), Bologna, ItalyDepartment of Pure and Applied Sciences (DiSPeA) of the University of Urbino and Institute of Atmospheric Sciences and Climate (ISAC) of the National Research Council (CNR), Bologna, ItalySwiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution and Environmental Technology (Empa), Dübendorf, SwitzerlandSwiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution and Environmental Technology (Empa), Dübendorf, SwitzerlandScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, California, USASchool of Chemistry, University of Bristol, Bristol, UKSchool of Chemistry, University of Bristol, Bristol, UKClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, AustraliaScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, California, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, California, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, California, USAKyungpook Institute of Oceanography, Kyungpook National University, Daegu, Republic of KoreaKyungpook Institute of Oceanography, Kyungpook National University, Daegu, Republic of KoreaNational Physical Laboratory, Teddington, UKSchool of GeoSciences, The University of Edinburgh, Edinburgh, UKNational Physical Laboratory, Teddington, UKClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Aspendale, Victoria, AustraliaSchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USACenter for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA<p>We report a 40-year history of SF<span class="inline-formula"><sub>6</sub></span> atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples, to determine emission estimates from 1978 to 2018. Previously we reported a global emission rate of <span class="inline-formula">7.3±0.6</span> Gg yr<span class="inline-formula"><sup>−1</sup></span> in 2008 and over the past decade emissions have continued to increase by about 24 % to <span class="inline-formula">9.04±0.35</span> Gg yr<span class="inline-formula"><sup>−1</sup></span> in 2018. We show that changing patterns in SF<span class="inline-formula"><sub>6</sub></span> consumption from developed (Kyoto Protocol Annex-1) to developing countries (non-Annex-1) and the rapid global expansion of the electric power industry, mainly in Asia, have increased the demand for SF<span class="inline-formula"><sub>6</sub></span>-insulated switchgear, circuit breakers, and transformers. The large bank of SF<span class="inline-formula"><sub>6</sub></span> sequestered in this electrical equipment provides a substantial source of emissions from maintenance, replacement, and continuous leakage. Other emissive sources of SF<span class="inline-formula"><sub>6</sub></span> occur from the magnesium, aluminium, and electronics industries as well as more minor industrial applications. More recently, reported emissions, including those from electrical equipment and metal industries, primarily in the Annex-1 countries, have declined steadily through substitution of alternative blanketing gases and technological improvements in less emissive equipment and more efficient industrial practices. Nevertheless, there are still demands for SF<span class="inline-formula"><sub>6</sub></span> in Annex-1 countries due to economic growth, as well as continuing emissions from older equipment and additional emissions from newly installed SF<span class="inline-formula"><sub>6</sub></span>-insulated electrical equipment, although at low emission rates. In addition, in the non-Annex-1 countries, SF<span class="inline-formula"><sub>6</sub></span> emissions have increased due to an expansion<span id="page7272"/> in the growth of the electrical power, metal, and electronics industries to support their continuing development.</p> <p>There is an annual difference of 2.5–5 Gg yr<span class="inline-formula"><sup>−1</sup></span> (1990–2018) between our modelled top-down emissions and the UNFCCC-reported bottom-up emissions (United Nations Framework Convention on Climate Change), which we attempt to reconcile through analysis of the potential contribution of emissions from the various industrial applications which use SF<span class="inline-formula"><sub>6</sub></span>. We also investigate regional emissions in East Asia (China, S. Korea) and western Europe and their respective contributions to the global atmospheric SF<span class="inline-formula"><sub>6</sub></span> inventory. On an average annual basis, our estimated emissions from the whole of China are approximately 10 times greater than emissions from western Europe. In 2018, our modelled Chinese and western European emissions accounted for <span class="inline-formula">∼36</span> % and 3.1 %, respectively, of our global SF<span class="inline-formula"><sub>6</sub></span> emissions estimate.</p>https://www.atmos-chem-phys.net/20/7271/2020/acp-20-7271-2020.pdf |
spellingShingle | P. G. Simmonds M. Rigby A. J. Manning S. Park K. M. Stanley K. M. Stanley A. McCulloch S. Henne F. Graziosi M. Maione J. Arduini S. Reimann M. K. Vollmer J. Mühle S. O'Doherty D. Young P. B. Krummel P. J. Fraser R. F. Weiss P. K. Salameh C. M. Harth M.-K. Park H. Park T. Arnold T. Arnold C. Rennick L. P. Steele B. Mitrevski R. H. J. Wang R. G. Prinn The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>) Atmospheric Chemistry and Physics |
title | The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>) |
title_full | The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>) |
title_fullStr | The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>) |
title_full_unstemmed | The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>) |
title_short | The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF<sub>6</sub>) |
title_sort | increasing atmospheric burden of the greenhouse gas sulfur hexafluoride sf sub 6 sub |
url | https://www.atmos-chem-phys.net/20/7271/2020/acp-20-7271-2020.pdf |
work_keys_str_mv | AT pgsimmonds theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT mrigby theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT ajmanning theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT spark theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT kmstanley theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT kmstanley theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT amcculloch theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT shenne theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT fgraziosi theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT mmaione theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT jarduini theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT sreimann theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT mkvollmer theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT jmuhle theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT sodoherty theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT dyoung theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT pbkrummel theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT pjfraser theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT rfweiss theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT pksalameh theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT cmharth theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT mkpark theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT hpark theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT tarnold theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT tarnold theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT crennick theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT lpsteele theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT bmitrevski theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT rhjwang theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT rgprinn theincreasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT pgsimmonds increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT mrigby increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT ajmanning increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT spark increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT kmstanley increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT kmstanley increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT amcculloch increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT shenne increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT fgraziosi increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT mmaione increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT jarduini increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT sreimann increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT mkvollmer increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT jmuhle increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT sodoherty increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT dyoung increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT pbkrummel increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT pjfraser increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT rfweiss increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT pksalameh increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT cmharth increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT mkpark increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT hpark increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT tarnold increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT tarnold increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT crennick increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT lpsteele increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT bmitrevski increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT rhjwang increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub AT rgprinn increasingatmosphericburdenofthegreenhousegassulfurhexafluoridesfsub6sub |