Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient

Abstract The occurrence of phlogopite and amphibole in mantle ultramafic rocks is widely accepted as the modal effect of metasomatism in the upper mantle. However, their simultaneous formation during metasomatic events and the related sub-solidus equilibrium with the peridotite has not been extensiv...

Full description

Bibliographic Details
Main Authors: Costanza Bonadiman, Valentina Brombin, Giovanni B. Andreozzi, Piera Benna, Massimo Coltorti, Nadia Curetti, Barbara Faccini, Marcello Merli, Beatrice Pelorosso, Vincenzo Stagno, Magdala Tesauro, Alessandro Pavese
Format: Article
Language:English
Published: Nature Portfolio 2021-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-90844-w
_version_ 1831572643228155904
author Costanza Bonadiman
Valentina Brombin
Giovanni B. Andreozzi
Piera Benna
Massimo Coltorti
Nadia Curetti
Barbara Faccini
Marcello Merli
Beatrice Pelorosso
Vincenzo Stagno
Magdala Tesauro
Alessandro Pavese
author_facet Costanza Bonadiman
Valentina Brombin
Giovanni B. Andreozzi
Piera Benna
Massimo Coltorti
Nadia Curetti
Barbara Faccini
Marcello Merli
Beatrice Pelorosso
Vincenzo Stagno
Magdala Tesauro
Alessandro Pavese
author_sort Costanza Bonadiman
collection DOAJ
description Abstract The occurrence of phlogopite and amphibole in mantle ultramafic rocks is widely accepted as the modal effect of metasomatism in the upper mantle. However, their simultaneous formation during metasomatic events and the related sub-solidus equilibrium with the peridotite has not been extensively studied. In this work, we discuss the geochemical conditions at which the pargasite-phlogopite assemblage becomes stable, through the investigation of two mantle xenoliths from Mount Leura (Victoria State, Australia) that bear phlogopite and the phlogopite + amphibole (pargasite) pair disseminated in a harzburgite matrix. Combining a mineralogical study and thermodynamic modelling, we predict that the P–T locus of the equilibrium reaction pargasite + forsterite = Na-phlogopite + 2 diopside + spinel, over the range 1.3–3.0 GPa/540–1500 K, yields a negative Clapeyron slope of -0.003 GPa K–1 (on average). The intersection of the P–T locus of supposed equilibrium with the new mantle geotherm calculated in this work allowed us to state that the Mount Leura xenoliths achieved equilibrium at 2.3 GPa /1190 K, that represents a plausible depth of ~ 70 km. Metasomatic K-Na-OH rich fluids stabilize hydrous phases. This has been modelled by the following equilibrium equation: 2 (K,Na)-phlogopite + forsterite = 7/2 enstatite + spinel + fluid (components: Na2O,K2O,H2O). Using quantum-mechanics, semi-empirical potentials, lattice dynamics and observed thermo-elastic data, we concluded that K-Na-OH rich fluids are not effective metasomatic agents to convey alkali species across the upper mantle, as the fluids are highly reactive with the ultramafic system and favour the rapid formation of phlogopite and amphibole. In addition, oxygen fugacity estimates of the Mount Leura mantle xenoliths [Δ(FMQ) = –1.97 ± 0.35; –1.83 ± 0.36] indicate a more reducing mantle environment than what is expected from the occurrence of phlogopite and amphibole in spinel-bearing peridotites. This is accounted for by our model of full molecular dissociation of the fluid and incorporation of the O-H-K-Na species into (OH)-K-Na-bearing mineral phases (phlogopite and amphibole), that leads to a peridotite metasomatized ambient characterized by reduced oxygen fugacity.
first_indexed 2024-12-17T13:31:03Z
format Article
id doaj.art-840c784f6ced414882045257231e3c6a
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-12-17T13:31:03Z
publishDate 2021-06-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-840c784f6ced414882045257231e3c6a2022-12-21T21:46:34ZengNature PortfolioScientific Reports2045-23222021-06-0111111710.1038/s41598-021-90844-wPhlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambientCostanza Bonadiman0Valentina Brombin1Giovanni B. Andreozzi2Piera Benna3Massimo Coltorti4Nadia Curetti5Barbara Faccini6Marcello Merli7Beatrice Pelorosso8Vincenzo Stagno9Magdala Tesauro10Alessandro Pavese11Dipartimento di Fisica e Scienze della Terra, Università degli Studi di FerraraDipartimento di Fisica e Scienze della Terra, Università degli Studi di FerraraDipartimento di Scienze della Terra, Sapienza Università di RomaDipartimento di Scienze della Terra, Università degli Studi di TorinoDipartimento di Fisica e Scienze della Terra, Università degli Studi di FerraraDipartimento di Scienze della Terra, Università degli Studi di TorinoDipartimento di Fisica e Scienze della Terra, Università degli Studi di FerraraDipartimento di Scienze della Terra e del Mare (DiSTeM), Università di PalermoDipartimento di Fisica e Scienze della Terra, Università degli Studi di FerraraDipartimento di Scienze della Terra, Sapienza Università di RomaDipartimento di Matematica e Geoscienze, Università di TriesteDipartimento di Scienze della Terra, Università degli Studi di TorinoAbstract The occurrence of phlogopite and amphibole in mantle ultramafic rocks is widely accepted as the modal effect of metasomatism in the upper mantle. However, their simultaneous formation during metasomatic events and the related sub-solidus equilibrium with the peridotite has not been extensively studied. In this work, we discuss the geochemical conditions at which the pargasite-phlogopite assemblage becomes stable, through the investigation of two mantle xenoliths from Mount Leura (Victoria State, Australia) that bear phlogopite and the phlogopite + amphibole (pargasite) pair disseminated in a harzburgite matrix. Combining a mineralogical study and thermodynamic modelling, we predict that the P–T locus of the equilibrium reaction pargasite + forsterite = Na-phlogopite + 2 diopside + spinel, over the range 1.3–3.0 GPa/540–1500 K, yields a negative Clapeyron slope of -0.003 GPa K–1 (on average). The intersection of the P–T locus of supposed equilibrium with the new mantle geotherm calculated in this work allowed us to state that the Mount Leura xenoliths achieved equilibrium at 2.3 GPa /1190 K, that represents a plausible depth of ~ 70 km. Metasomatic K-Na-OH rich fluids stabilize hydrous phases. This has been modelled by the following equilibrium equation: 2 (K,Na)-phlogopite + forsterite = 7/2 enstatite + spinel + fluid (components: Na2O,K2O,H2O). Using quantum-mechanics, semi-empirical potentials, lattice dynamics and observed thermo-elastic data, we concluded that K-Na-OH rich fluids are not effective metasomatic agents to convey alkali species across the upper mantle, as the fluids are highly reactive with the ultramafic system and favour the rapid formation of phlogopite and amphibole. In addition, oxygen fugacity estimates of the Mount Leura mantle xenoliths [Δ(FMQ) = –1.97 ± 0.35; –1.83 ± 0.36] indicate a more reducing mantle environment than what is expected from the occurrence of phlogopite and amphibole in spinel-bearing peridotites. This is accounted for by our model of full molecular dissociation of the fluid and incorporation of the O-H-K-Na species into (OH)-K-Na-bearing mineral phases (phlogopite and amphibole), that leads to a peridotite metasomatized ambient characterized by reduced oxygen fugacity.https://doi.org/10.1038/s41598-021-90844-w
spellingShingle Costanza Bonadiman
Valentina Brombin
Giovanni B. Andreozzi
Piera Benna
Massimo Coltorti
Nadia Curetti
Barbara Faccini
Marcello Merli
Beatrice Pelorosso
Vincenzo Stagno
Magdala Tesauro
Alessandro Pavese
Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient
Scientific Reports
title Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient
title_full Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient
title_fullStr Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient
title_full_unstemmed Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient
title_short Phlogopite-pargasite coexistence in an oxygen reduced spinel-peridotite ambient
title_sort phlogopite pargasite coexistence in an oxygen reduced spinel peridotite ambient
url https://doi.org/10.1038/s41598-021-90844-w
work_keys_str_mv AT costanzabonadiman phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT valentinabrombin phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT giovannibandreozzi phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT pierabenna phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT massimocoltorti phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT nadiacuretti phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT barbarafaccini phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT marcellomerli phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT beatricepelorosso phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT vincenzostagno phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT magdalatesauro phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient
AT alessandropavese phlogopitepargasitecoexistenceinanoxygenreducedspinelperidotiteambient