Interactions between inflammatory gene polymorphisms and HTLV-I infection for total death, incidence of cancer, and atherosclerosis-related diseases among the Japanese population

Background: An increased risk of total death owing to human T-lymphotropic virus type-I (HTLV-I) infection has been reported. However, its etiology and protective factors are unclear. Various studies reported fluctuations in immune-inflammatory status among HTLV-I carriers. We conducted a matched co...

Full description

Bibliographic Details
Main Author: Tara Sefanya Kairupan
Format: Article
Language:English
Published: Japan Epidemiological Association 2017-09-01
Series:Journal of Epidemiology
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/jea/27/9/27_JE83/_pdf
Description
Summary:Background: An increased risk of total death owing to human T-lymphotropic virus type-I (HTLV-I) infection has been reported. However, its etiology and protective factors are unclear. Various studies reported fluctuations in immune-inflammatory status among HTLV-I carriers. We conducted a matched cohort study among the general population in an HTLV-I-endemic region of Japan to investigate the interaction between inflammatory gene polymorphisms and HTLV-I infection for total death, incidence of cancer, and atherosclerosis-related diseases. Method: We selected 2180 sub-cohort subjects aged 35–69 years from the cohort population, after matching for age, sex, and region with HTLV-I seropositives. They were followed up for a maximum of 10 years. Inflammatory gene polymorphisms were selected from TNF-α, IL-10, and NF-κB1. A Cox proportional hazard model was used to estimate the hazard ratio (HR) and the interaction between gene polymorphisms and HTLV-I for risk of total death and incidence of cancer and atherosclerosis-related diseases. Results: HTLV-I seropositivity rate was 6.4% in the cohort population. The interaction between TNF-α 1031T/C and HTLV-I for atherosclerosis-related disease incidence was statistically significant (p = 0.020). No significant interaction was observed between IL-10 819T/C or NF-κB1 94ATTG ins/del and HTLV-I. An increased HR for total death was observed in the Amami island region, after adjustment of various factors with gene polymorphisms (HR 3.03; 95% confidence interval, 1.18–7.77). Conclusion: The present study found the interaction between TNF-α 1031T/C and HTLV-I to be a risk factor for atherosclerosis-related disease. Further follow-up is warranted to investigate protective factors against developing diseases among susceptible HTLV-I carriers.
ISSN:0917-5040
1349-9092