Machine Learning Based Bearing Fault Diagnosis Using the Case Western Reserve University Data: A Review

The most important parts of rotating machinery are the rolling bearings. Finding bearing faults in time can avoid affecting the operation of the entire equipment. The data-driven fault diagnosis technology of bearings has recently become a research hotspot, and the starting point of research is ofte...

Full description

Bibliographic Details
Main Authors: Xiao Zhang, Boyang Zhao, Yun Lin
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9617588/
Description
Summary:The most important parts of rotating machinery are the rolling bearings. Finding bearing faults in time can avoid affecting the operation of the entire equipment. The data-driven fault diagnosis technology of bearings has recently become a research hotspot, and the starting point of research is often the acquisition of vibration signals. There are many public data sets for rolling bearings. Among them, the most widely used public dataset is Case Western Reserve University bearing center (CWRU). This paper will start from the CWRU data set, compare and analyze some basic methods of machine learning based rolling bearing fault diagnosis, and summarize the characteristics of CWRU. First, we give a comprehensive introduction to CWRU and summarize the results achieved. After that, the basic methods and principles of machine learning based rolling bearing fault diagnosis were summarized. Finally, we conduct experiments and analyze experimental results. This paper will have certain guiding significance for the future use of CWRU for machine learning based rolling bearing fault diagnosis.
ISSN:2169-3536