Fractional Evolution Equations with Infinite Time Delay in Abstract Phase Space

In the presented research, the uniqueness and existence of a mild solution for a fractional system of semilinear evolution equations with infinite delay and an infinitesimal generator operator are demonstrated. The generalized Liouville–Caputo derivative of non-integer-order <inline-formula>&l...

Full description

Bibliographic Details
Main Authors: Ahmed Salem, Kholoud N. Alharbi, Hashim M. Alshehri
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/8/1332
_version_ 1797434431138430976
author Ahmed Salem
Kholoud N. Alharbi
Hashim M. Alshehri
author_facet Ahmed Salem
Kholoud N. Alharbi
Hashim M. Alshehri
author_sort Ahmed Salem
collection DOAJ
description In the presented research, the uniqueness and existence of a mild solution for a fractional system of semilinear evolution equations with infinite delay and an infinitesimal generator operator are demonstrated. The generalized Liouville–Caputo derivative of non-integer-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula> and the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>ρ</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> are used to establish our model. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Laplace transform and strongly continuous cosine and sine families of uniformly bounded linear operators are adapted to obtain the mild solution. The Leray–Schauder alternative theorem and Banach contraction principle are used to demonstrate the mild solution’s existence and uniqueness in abstract phase space. The results are applied to the fractional wave equation.
first_indexed 2024-03-09T10:32:08Z
format Article
id doaj.art-8424a1c82bd34ff7986530dc3acef2f9
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T10:32:08Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-8424a1c82bd34ff7986530dc3acef2f92023-12-01T21:12:21ZengMDPI AGMathematics2227-73902022-04-01108133210.3390/math10081332Fractional Evolution Equations with Infinite Time Delay in Abstract Phase SpaceAhmed Salem0Kholoud N. Alharbi1Hashim M. Alshehri2Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaIn the presented research, the uniqueness and existence of a mild solution for a fractional system of semilinear evolution equations with infinite delay and an infinitesimal generator operator are demonstrated. The generalized Liouville–Caputo derivative of non-integer-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula> and the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>ρ</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> are used to establish our model. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Laplace transform and strongly continuous cosine and sine families of uniformly bounded linear operators are adapted to obtain the mild solution. The Leray–Schauder alternative theorem and Banach contraction principle are used to demonstrate the mild solution’s existence and uniqueness in abstract phase space. The results are applied to the fractional wave equation.https://www.mdpi.com/2227-7390/10/8/1332generalized Liouville–Caputo fractional derivative<i>ρ</i>-Laplace transformationinfinite time delaymild solutionLeray–Schauder alternative
spellingShingle Ahmed Salem
Kholoud N. Alharbi
Hashim M. Alshehri
Fractional Evolution Equations with Infinite Time Delay in Abstract Phase Space
Mathematics
generalized Liouville–Caputo fractional derivative
<i>ρ</i>-Laplace transformation
infinite time delay
mild solution
Leray–Schauder alternative
title Fractional Evolution Equations with Infinite Time Delay in Abstract Phase Space
title_full Fractional Evolution Equations with Infinite Time Delay in Abstract Phase Space
title_fullStr Fractional Evolution Equations with Infinite Time Delay in Abstract Phase Space
title_full_unstemmed Fractional Evolution Equations with Infinite Time Delay in Abstract Phase Space
title_short Fractional Evolution Equations with Infinite Time Delay in Abstract Phase Space
title_sort fractional evolution equations with infinite time delay in abstract phase space
topic generalized Liouville–Caputo fractional derivative
<i>ρ</i>-Laplace transformation
infinite time delay
mild solution
Leray–Schauder alternative
url https://www.mdpi.com/2227-7390/10/8/1332
work_keys_str_mv AT ahmedsalem fractionalevolutionequationswithinfinitetimedelayinabstractphasespace
AT kholoudnalharbi fractionalevolutionequationswithinfinitetimedelayinabstractphasespace
AT hashimmalshehri fractionalevolutionequationswithinfinitetimedelayinabstractphasespace