HYPERSPECTRAL IMAGE CLASSIFICATION USING MULTI-LAYER PERCEPTRON MIXER (MLP-MIXER)

The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophistica...

Full description

Bibliographic Details
Main Authors: A. Jamali, M. Mahdianpari, A. Abdul Rahman
Format: Article
Language:English
Published: Copernicus Publications 2023-02-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVIII-4-W6-2022/179/2023/isprs-archives-XLVIII-4-W6-2022-179-2023.pdf
_version_ 1811169301004025856
author A. Jamali
M. Mahdianpari
M. Mahdianpari
A. Abdul Rahman
author_facet A. Jamali
M. Mahdianpari
M. Mahdianpari
A. Abdul Rahman
author_sort A. Jamali
collection DOAJ
description The classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophisticated Multi-Layer Perceptron (MLP) algorithms. In this paper, we propose using MLP-Mixer to classify HSI data in three data benchmarks of Pavia, Salinas, and Indian Pines. Based on the results, the proposed MLP-Mixer achieved a high level of classification accuracy and produced noise-free and homogenous classification maps in all study areas. For the classification of HSI data in Salinas, Indian Pines, and Pavia, the proposed MLP-Mixer achieved an average accuracy of 99.82%, 99.81%, and 99.23%, respectively.
first_indexed 2024-04-10T16:40:08Z
format Article
id doaj.art-842d5afe58f149b0a9100f34f168f3a4
institution Directory Open Access Journal
issn 1682-1750
2194-9034
language English
last_indexed 2024-04-10T16:40:08Z
publishDate 2023-02-01
publisher Copernicus Publications
record_format Article
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj.art-842d5afe58f149b0a9100f34f168f3a42023-02-08T07:51:45ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342023-02-01XLVIII-4-W6-202217918210.5194/isprs-archives-XLVIII-4-W6-2022-179-2023HYPERSPECTRAL IMAGE CLASSIFICATION USING MULTI-LAYER PERCEPTRON MIXER (MLP-MIXER)A. Jamali0M. Mahdianpari1M. Mahdianpari2A. Abdul Rahman3Faculty of Engineering, University of Karabük, Karabük, TürkiyeDepartment of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John’s, NL A1B3X5, CanadaC-CORE, 1 Morrissey Rd, St. John’s, NL A1B 3X5, CanadaFaculty of Built Environment and Surveying, Universiti Teknologi Malaysia (UTM), Johor Bahru, MalaysiaThe classifying of hyperspectral images (HSI) is a difficult task given the high dimensionality of the space, the huge number of spectral bands, and the small number of labeled data. As such, we offer a unique hyperspectral image classification methodology to address these issues based on sophisticated Multi-Layer Perceptron (MLP) algorithms. In this paper, we propose using MLP-Mixer to classify HSI data in three data benchmarks of Pavia, Salinas, and Indian Pines. Based on the results, the proposed MLP-Mixer achieved a high level of classification accuracy and produced noise-free and homogenous classification maps in all study areas. For the classification of HSI data in Salinas, Indian Pines, and Pavia, the proposed MLP-Mixer achieved an average accuracy of 99.82%, 99.81%, and 99.23%, respectively.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVIII-4-W6-2022/179/2023/isprs-archives-XLVIII-4-W6-2022-179-2023.pdf
spellingShingle A. Jamali
M. Mahdianpari
M. Mahdianpari
A. Abdul Rahman
HYPERSPECTRAL IMAGE CLASSIFICATION USING MULTI-LAYER PERCEPTRON MIXER (MLP-MIXER)
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title HYPERSPECTRAL IMAGE CLASSIFICATION USING MULTI-LAYER PERCEPTRON MIXER (MLP-MIXER)
title_full HYPERSPECTRAL IMAGE CLASSIFICATION USING MULTI-LAYER PERCEPTRON MIXER (MLP-MIXER)
title_fullStr HYPERSPECTRAL IMAGE CLASSIFICATION USING MULTI-LAYER PERCEPTRON MIXER (MLP-MIXER)
title_full_unstemmed HYPERSPECTRAL IMAGE CLASSIFICATION USING MULTI-LAYER PERCEPTRON MIXER (MLP-MIXER)
title_short HYPERSPECTRAL IMAGE CLASSIFICATION USING MULTI-LAYER PERCEPTRON MIXER (MLP-MIXER)
title_sort hyperspectral image classification using multi layer perceptron mixer mlp mixer
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVIII-4-W6-2022/179/2023/isprs-archives-XLVIII-4-W6-2022-179-2023.pdf
work_keys_str_mv AT ajamali hyperspectralimageclassificationusingmultilayerperceptronmixermlpmixer
AT mmahdianpari hyperspectralimageclassificationusingmultilayerperceptronmixermlpmixer
AT mmahdianpari hyperspectralimageclassificationusingmultilayerperceptronmixermlpmixer
AT aabdulrahman hyperspectralimageclassificationusingmultilayerperceptronmixermlpmixer