Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy

Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy...

Full description

Bibliographic Details
Main Authors: Andreas Pohlkötter, Michael Köhring, Ulrike Willer, Wolfgang Schade
Format: Article
Language:English
Published: MDPI AG 2010-09-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/10/9/8466/
Description
Summary:Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy (QEPAS). With this system a detection limit of 13 ppm is reached with a compact and long term stable setup. Further improvement of the detection limit is possible by adding suitable gases to the sample gas that promote the radiationless de-excitation of the oxygen molecules.
ISSN:1424-8220