Multiple positive solutions for a system of ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian Hadamard fractional order BVP with parameters

Abstract In this article, we are pleased to investigate multiple positive solutions for a system of Hadamard fractional differential equations with ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian operator. The main results rely on the standard tools of different fixed point theorems. Finally,...

Full description

Bibliographic Details
Main Authors: Sabbavarapu Nageswara Rao, Abdullah Ali H. Ahmadini
Format: Article
Language:English
Published: SpringerOpen 2021-10-01
Series:Advances in Difference Equations
Subjects:
Online Access:https://doi.org/10.1186/s13662-021-03591-7
_version_ 1819242594490646528
author Sabbavarapu Nageswara Rao
Abdullah Ali H. Ahmadini
author_facet Sabbavarapu Nageswara Rao
Abdullah Ali H. Ahmadini
author_sort Sabbavarapu Nageswara Rao
collection DOAJ
description Abstract In this article, we are pleased to investigate multiple positive solutions for a system of Hadamard fractional differential equations with ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian operator. The main results rely on the standard tools of different fixed point theorems. Finally, we demonstrate the application of the obtained results with the aid of examples.
first_indexed 2024-12-23T14:42:17Z
format Article
id doaj.art-8442ec27f0c24be08f9c2e32f06cd32f
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-12-23T14:42:17Z
publishDate 2021-10-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-8442ec27f0c24be08f9c2e32f06cd32f2022-12-21T17:43:10ZengSpringerOpenAdvances in Difference Equations1687-18472021-10-012021112110.1186/s13662-021-03591-7Multiple positive solutions for a system of ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian Hadamard fractional order BVP with parametersSabbavarapu Nageswara Rao0Abdullah Ali H. Ahmadini1Department of Mathematics, College of Science, Jazan UniversityDepartment of Mathematics, College of Science, Jazan UniversityAbstract In this article, we are pleased to investigate multiple positive solutions for a system of Hadamard fractional differential equations with ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian operator. The main results rely on the standard tools of different fixed point theorems. Finally, we demonstrate the application of the obtained results with the aid of examples.https://doi.org/10.1186/s13662-021-03591-7Hadamard fractional derivativeParametersTriple systemp-LaplacianFixed point theorems
spellingShingle Sabbavarapu Nageswara Rao
Abdullah Ali H. Ahmadini
Multiple positive solutions for a system of ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian Hadamard fractional order BVP with parameters
Advances in Difference Equations
Hadamard fractional derivative
Parameters
Triple system
p-Laplacian
Fixed point theorems
title Multiple positive solutions for a system of ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian Hadamard fractional order BVP with parameters
title_full Multiple positive solutions for a system of ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian Hadamard fractional order BVP with parameters
title_fullStr Multiple positive solutions for a system of ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian Hadamard fractional order BVP with parameters
title_full_unstemmed Multiple positive solutions for a system of ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian Hadamard fractional order BVP with parameters
title_short Multiple positive solutions for a system of ( p 1 , p 2 , p 3 ) $(p_{1}, p_{2}, p_{3})$ -Laplacian Hadamard fractional order BVP with parameters
title_sort multiple positive solutions for a system of p 1 p 2 p 3 p 1 p 2 p 3 laplacian hadamard fractional order bvp with parameters
topic Hadamard fractional derivative
Parameters
Triple system
p-Laplacian
Fixed point theorems
url https://doi.org/10.1186/s13662-021-03591-7
work_keys_str_mv AT sabbavarapunageswararao multiplepositivesolutionsforasystemofp1p2p3p1p2p3laplacianhadamardfractionalorderbvpwithparameters
AT abdullahalihahmadini multiplepositivesolutionsforasystemofp1p2p3p1p2p3laplacianhadamardfractionalorderbvpwithparameters