A new approach to nonlinear singular integral operators depending on three parameters

In this paper, we present some theorems on weighted approximation by two dimensional nonlinear singular integral operators in the following form: Tλ(f;x,y)=∬R2Kλ(t−x,s−y,f(t,s))dsdt,(x,y)∈R2,λ∈Λ,$${T_\lambda }(f;x,y) = \iint\limits_{{\mathbb{R}^2}}K_\lambda {(t - x,s - y,f(t,s))dsdt,\;(x,y) \in {\ma...

Full description

Bibliographic Details
Main Author: Uysal Gumrah
Format: Article
Language:English
Published: De Gruyter 2016-01-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2016-0081
Description
Summary:In this paper, we present some theorems on weighted approximation by two dimensional nonlinear singular integral operators in the following form: Tλ(f;x,y)=∬R2Kλ(t−x,s−y,f(t,s))dsdt,(x,y)∈R2,λ∈Λ,$${T_\lambda }(f;x,y) = \iint\limits_{{\mathbb{R}^2}}K_\lambda {(t - x,s - y,f(t,s))dsdt,\;(x,y) \in {\mathbb{R}^2},\lambda \in \Lambda ,}$$ where Λ is a set of non-negative numbers with accumulation point λ0.
ISSN:2391-5455