A new approach to nonlinear singular integral operators depending on three parameters
In this paper, we present some theorems on weighted approximation by two dimensional nonlinear singular integral operators in the following form: Tλ(f;x,y)=∬R2Kλ(t−x,s−y,f(t,s))dsdt,(x,y)∈R2,λ∈Λ,$${T_\lambda }(f;x,y) = \iint\limits_{{\mathbb{R}^2}}K_\lambda {(t - x,s - y,f(t,s))dsdt,\;(x,y) \in {\ma...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2016-01-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2016-0081 |
Summary: | In this paper, we present some theorems on weighted approximation by two dimensional nonlinear singular integral operators in the following form:
Tλ(f;x,y)=∬R2Kλ(t−x,s−y,f(t,s))dsdt,(x,y)∈R2,λ∈Λ,$${T_\lambda }(f;x,y) = \iint\limits_{{\mathbb{R}^2}}K_\lambda {(t - x,s - y,f(t,s))dsdt,\;(x,y) \in {\mathbb{R}^2},\lambda \in \Lambda ,}$$
where Λ is a set of non-negative numbers with accumulation point λ0. |
---|---|
ISSN: | 2391-5455 |