Microbial community composition along the digestive tract in forage- and grain-fed bison

Abstract Background Diversity and composition of microbial communities was compared across the 13 major sections of the digestive tract (esophagus, reticulum, rumen, omasum, abomasum, duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and rectum) in two captive pop...

Full description

Bibliographic Details
Main Author: Gaddy T. Bergmann
Format: Article
Language:English
Published: BMC 2017-08-01
Series:BMC Veterinary Research
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12917-017-1161-x
_version_ 1819212707631464448
author Gaddy T. Bergmann
author_facet Gaddy T. Bergmann
author_sort Gaddy T. Bergmann
collection DOAJ
description Abstract Background Diversity and composition of microbial communities was compared across the 13 major sections of the digestive tract (esophagus, reticulum, rumen, omasum, abomasum, duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and rectum) in two captive populations of American bison (Bison bison), one of which was finished on forage, the other on grain. Results Microbial diversity fell to its lowest levels in the small intestine, with Bacteroidetes reaching their lowest relative abundance in that region, while Firmicutes and Euryarchaeota attained their highest relative abundances there. Gammaproteobacteria were most abundant in the esophagus, small intestine, and colon. The forage-finished bison population exhibited higher overall levels of diversity, as well as a higher relative abundance of Bacteroidetes in most gut sections. The grain-finished bison population exhibited elevated levels of Firmicutes and Gammaproteobacteria. Within each population, different sections of the digestive tract exhibited divergent microbial community composition, although it was essentially the same among sections within a given region of the digestive tract. Shannon diversity was lowest in the midgut. For each section of the digestive tract, the two bison populations differed significantly in microbial community composition. Conclusions Similarities among sections indicate that the esophagus, reticulum, rumen, omasum, and abomasum may all be considered to house the foregut microbiota; the duodenum, jejunum, and ileum may all be considered to house the small intestine or midgut microbiota; and the cecum, ascending colon, transverse colon, descending colon, and rectum may all be considered to house the hindgut microbiota. Acid from the stomach, bile from the gall bladder, digestive enzymes from the pancreas, and the relatively low retention time of the small intestine may have caused the midgut’s low microbial diversity. Differences in microbial community composition between populations may have been most strongly influenced by differences in diet (forage or grain). The clinical condition of the animals used in the present study was not evaluated, so further research is needed to establish whether the microbial profiles of some bison in this study are indeed indicative of dysbiosis, a predisposing factor to ruminal acidosis and its sequelae.
first_indexed 2024-12-23T06:47:15Z
format Article
id doaj.art-844cb6c462e44b75b625eaa84b0bd84d
institution Directory Open Access Journal
issn 1746-6148
language English
last_indexed 2024-12-23T06:47:15Z
publishDate 2017-08-01
publisher BMC
record_format Article
series BMC Veterinary Research
spelling doaj.art-844cb6c462e44b75b625eaa84b0bd84d2022-12-21T17:56:32ZengBMCBMC Veterinary Research1746-61482017-08-011311910.1186/s12917-017-1161-xMicrobial community composition along the digestive tract in forage- and grain-fed bisonGaddy T. Bergmann0Department of Ecology and Evolutionary Biology, University of Colorado, BoulderAbstract Background Diversity and composition of microbial communities was compared across the 13 major sections of the digestive tract (esophagus, reticulum, rumen, omasum, abomasum, duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, descending colon, and rectum) in two captive populations of American bison (Bison bison), one of which was finished on forage, the other on grain. Results Microbial diversity fell to its lowest levels in the small intestine, with Bacteroidetes reaching their lowest relative abundance in that region, while Firmicutes and Euryarchaeota attained their highest relative abundances there. Gammaproteobacteria were most abundant in the esophagus, small intestine, and colon. The forage-finished bison population exhibited higher overall levels of diversity, as well as a higher relative abundance of Bacteroidetes in most gut sections. The grain-finished bison population exhibited elevated levels of Firmicutes and Gammaproteobacteria. Within each population, different sections of the digestive tract exhibited divergent microbial community composition, although it was essentially the same among sections within a given region of the digestive tract. Shannon diversity was lowest in the midgut. For each section of the digestive tract, the two bison populations differed significantly in microbial community composition. Conclusions Similarities among sections indicate that the esophagus, reticulum, rumen, omasum, and abomasum may all be considered to house the foregut microbiota; the duodenum, jejunum, and ileum may all be considered to house the small intestine or midgut microbiota; and the cecum, ascending colon, transverse colon, descending colon, and rectum may all be considered to house the hindgut microbiota. Acid from the stomach, bile from the gall bladder, digestive enzymes from the pancreas, and the relatively low retention time of the small intestine may have caused the midgut’s low microbial diversity. Differences in microbial community composition between populations may have been most strongly influenced by differences in diet (forage or grain). The clinical condition of the animals used in the present study was not evaluated, so further research is needed to establish whether the microbial profiles of some bison in this study are indeed indicative of dysbiosis, a predisposing factor to ruminal acidosis and its sequelae.http://link.springer.com/article/10.1186/s12917-017-1161-xBisonDigestive tractDietMicrobiota
spellingShingle Gaddy T. Bergmann
Microbial community composition along the digestive tract in forage- and grain-fed bison
BMC Veterinary Research
Bison
Digestive tract
Diet
Microbiota
title Microbial community composition along the digestive tract in forage- and grain-fed bison
title_full Microbial community composition along the digestive tract in forage- and grain-fed bison
title_fullStr Microbial community composition along the digestive tract in forage- and grain-fed bison
title_full_unstemmed Microbial community composition along the digestive tract in forage- and grain-fed bison
title_short Microbial community composition along the digestive tract in forage- and grain-fed bison
title_sort microbial community composition along the digestive tract in forage and grain fed bison
topic Bison
Digestive tract
Diet
Microbiota
url http://link.springer.com/article/10.1186/s12917-017-1161-x
work_keys_str_mv AT gaddytbergmann microbialcommunitycompositionalongthedigestivetractinforageandgrainfedbison