Optimasi Centroid Awal Algoritma K-Medoids Menggunakan Particle Swarm Optimization Untuk Segmentasi Customer
Customer segmentation is an important strategy in a company, it affects good customer relationships which will result in increased profits. Grouping customers in data mining can use several algorithms, but K-Medoids is the right choice because it can reduce noise and outlier sensitivity. However, th...
Main Authors: | Danang Bagus Wijaya, Edi Noersasongko, Purwanto Purwanto |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
Universitas Dian Nuswantoro
2024-02-01
|
Series: | Techno.Com |
Subjects: | |
Online Access: | https://publikasi.dinus.ac.id/index.php/technoc/article/view/9516 |
Similar Items
-
Comparison Of K-Means and K-Medoids Algorithm for Clustering Data UMKM in Pagar Alam City
by: sendy ariska, et al.
Published: (2024-06-01) -
Comparison of K-Means and K-Medoids Algorithms for Clustering Poverty Data in South Sumatra Using DBI Evaluation
by: M. Dandi Akhda, et al.
Published: (2024-11-01) -
EVALUASI KINERJA ALGORITMA K-MEANS DENGAN MATRIKS JARAK EUCLIDEAN PADA PENENTUAN SISWA BERMASALAH
by: Nur Aeni Widiastuti, et al.
Published: (2022-12-01) -
Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering
by: Qomariyah, et al.
Published: (2022-05-01) -
Analisis Clustering Pegawai Berdasarkan Tingkat Kedisiplinan Menggunakan Algoritma K-Means dan Davies-Bouldin Index
by: Wahyu Alfian, et al.
Published: (2024-10-01)