Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization
In this work, we demonstrate a wafer-scale fabrication of biologically sensitive Si nanowire FET for pH sensing and electrical detection of deoxyribonucleic acid (DNA) hybridization. Based on conventional “top-down” CMOS compatible technology, our bioFETs explore a wide range o...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Journal of the Electron Devices Society |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9755958/ |
_version_ | 1818490013487202304 |
---|---|
author | R. Midahuen B. Previtali C. Fontelaye G. Nonglaton V. Stambouli S. Barraud |
author_facet | R. Midahuen B. Previtali C. Fontelaye G. Nonglaton V. Stambouli S. Barraud |
author_sort | R. Midahuen |
collection | DOAJ |
description | In this work, we demonstrate a wafer-scale fabrication of biologically sensitive Si nanowire FET for pH sensing and electrical detection of deoxyribonucleic acid (DNA) hybridization. Based on conventional “top-down” CMOS compatible technology, our bioFETs explore a wide range of design (nanowires (NW), nanoribbons (NR), and honeycomb (HC) structures) with opening access scaled down to only 120 nm. After device fabrication, I<sub>DS</sub>-V<sub>BG</sub> transfer and I<sub>DS</sub>-V<sub>DS</sub> output characteristics show a conventional n-type FET behavior with an I<sub>ON</sub>/I<sub>OFF</sub> value higher than 10<sup>5</sup>, as well as an increase of threshold voltage as the NW width is reduced. Then, using a capacitive coupling in our dually-gated Si bioFETs, the pH sensitivity is enhanced with a pH response up to 600 mV/pH. Finally, we successfully detected an increase of threshold voltage of n-type silicon nanowires (SiNWs) due to hybridized target DNA molecules. |
first_indexed | 2024-12-10T17:11:32Z |
format | Article |
id | doaj.art-844e17eaa3994d1686e0ba103e6aac99 |
institution | Directory Open Access Journal |
issn | 2168-6734 |
language | English |
last_indexed | 2024-12-10T17:11:32Z |
publishDate | 2022-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Journal of the Electron Devices Society |
spelling | doaj.art-844e17eaa3994d1686e0ba103e6aac992022-12-22T01:40:18ZengIEEEIEEE Journal of the Electron Devices Society2168-67342022-01-011057558310.1109/JEDS.2022.31666839755958Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA HybridizationR. Midahuen0https://orcid.org/0000-0003-2082-1503B. Previtali1C. Fontelaye2G. Nonglaton3https://orcid.org/0000-0003-2975-5338V. Stambouli4S. Barraud5https://orcid.org/0000-0002-4334-9638CEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceCEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceCEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceCEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceUniv. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, Grenoble, FranceCEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceIn this work, we demonstrate a wafer-scale fabrication of biologically sensitive Si nanowire FET for pH sensing and electrical detection of deoxyribonucleic acid (DNA) hybridization. Based on conventional “top-down” CMOS compatible technology, our bioFETs explore a wide range of design (nanowires (NW), nanoribbons (NR), and honeycomb (HC) structures) with opening access scaled down to only 120 nm. After device fabrication, I<sub>DS</sub>-V<sub>BG</sub> transfer and I<sub>DS</sub>-V<sub>DS</sub> output characteristics show a conventional n-type FET behavior with an I<sub>ON</sub>/I<sub>OFF</sub> value higher than 10<sup>5</sup>, as well as an increase of threshold voltage as the NW width is reduced. Then, using a capacitive coupling in our dually-gated Si bioFETs, the pH sensitivity is enhanced with a pH response up to 600 mV/pH. Finally, we successfully detected an increase of threshold voltage of n-type silicon nanowires (SiNWs) due to hybridized target DNA molecules.https://ieeexplore.ieee.org/document/9755958/BiosensingISFETDNAsilicon nanowire |
spellingShingle | R. Midahuen B. Previtali C. Fontelaye G. Nonglaton V. Stambouli S. Barraud Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization IEEE Journal of the Electron Devices Society Biosensing ISFET DNA silicon nanowire |
title | Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization |
title_full | Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization |
title_fullStr | Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization |
title_full_unstemmed | Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization |
title_short | Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization |
title_sort | optimum functionalization of si nanowire fet for electrical detection of dna hybridization |
topic | Biosensing ISFET DNA silicon nanowire |
url | https://ieeexplore.ieee.org/document/9755958/ |
work_keys_str_mv | AT rmidahuen optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization AT bprevitali optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization AT cfontelaye optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization AT gnonglaton optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization AT vstambouli optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization AT sbarraud optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization |