Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization

In this work, we demonstrate a wafer-scale fabrication of biologically sensitive Si nanowire FET for pH sensing and electrical detection of deoxyribonucleic acid (DNA) hybridization. Based on conventional “top-down” CMOS compatible technology, our bioFETs explore a wide range o...

Full description

Bibliographic Details
Main Authors: R. Midahuen, B. Previtali, C. Fontelaye, G. Nonglaton, V. Stambouli, S. Barraud
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9755958/
_version_ 1818490013487202304
author R. Midahuen
B. Previtali
C. Fontelaye
G. Nonglaton
V. Stambouli
S. Barraud
author_facet R. Midahuen
B. Previtali
C. Fontelaye
G. Nonglaton
V. Stambouli
S. Barraud
author_sort R. Midahuen
collection DOAJ
description In this work, we demonstrate a wafer-scale fabrication of biologically sensitive Si nanowire FET for pH sensing and electrical detection of deoxyribonucleic acid (DNA) hybridization. Based on conventional &#x201C;top-down&#x201D; CMOS compatible technology, our bioFETs explore a wide range of design (nanowires (NW), nanoribbons (NR), and honeycomb (HC) structures) with opening access scaled down to only 120 nm. After device fabrication, I<sub>DS</sub>-V<sub>BG</sub> transfer and I<sub>DS</sub>-V<sub>DS</sub> output characteristics show a conventional n-type FET behavior with an I<sub>ON</sub>/I<sub>OFF</sub> value higher than 10<sup>5</sup>, as well as an increase of threshold voltage as the NW width is reduced. Then, using a capacitive coupling in our dually-gated Si bioFETs, the pH sensitivity is enhanced with a pH response up to 600 mV/pH. Finally, we successfully detected an increase of threshold voltage of n-type silicon nanowires (SiNWs) due to hybridized target DNA molecules.
first_indexed 2024-12-10T17:11:32Z
format Article
id doaj.art-844e17eaa3994d1686e0ba103e6aac99
institution Directory Open Access Journal
issn 2168-6734
language English
last_indexed 2024-12-10T17:11:32Z
publishDate 2022-01-01
publisher IEEE
record_format Article
series IEEE Journal of the Electron Devices Society
spelling doaj.art-844e17eaa3994d1686e0ba103e6aac992022-12-22T01:40:18ZengIEEEIEEE Journal of the Electron Devices Society2168-67342022-01-011057558310.1109/JEDS.2022.31666839755958Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA HybridizationR. Midahuen0https://orcid.org/0000-0003-2082-1503B. Previtali1C. Fontelaye2G. Nonglaton3https://orcid.org/0000-0003-2975-5338V. Stambouli4S. Barraud5https://orcid.org/0000-0002-4334-9638CEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceCEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceCEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceCEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceUniv. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, Grenoble, FranceCEA, LETI, MINATEC Campus and Univ. Grenoble Alpes, Grenoble, FranceIn this work, we demonstrate a wafer-scale fabrication of biologically sensitive Si nanowire FET for pH sensing and electrical detection of deoxyribonucleic acid (DNA) hybridization. Based on conventional &#x201C;top-down&#x201D; CMOS compatible technology, our bioFETs explore a wide range of design (nanowires (NW), nanoribbons (NR), and honeycomb (HC) structures) with opening access scaled down to only 120 nm. After device fabrication, I<sub>DS</sub>-V<sub>BG</sub> transfer and I<sub>DS</sub>-V<sub>DS</sub> output characteristics show a conventional n-type FET behavior with an I<sub>ON</sub>/I<sub>OFF</sub> value higher than 10<sup>5</sup>, as well as an increase of threshold voltage as the NW width is reduced. Then, using a capacitive coupling in our dually-gated Si bioFETs, the pH sensitivity is enhanced with a pH response up to 600 mV/pH. Finally, we successfully detected an increase of threshold voltage of n-type silicon nanowires (SiNWs) due to hybridized target DNA molecules.https://ieeexplore.ieee.org/document/9755958/BiosensingISFETDNAsilicon nanowire
spellingShingle R. Midahuen
B. Previtali
C. Fontelaye
G. Nonglaton
V. Stambouli
S. Barraud
Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization
IEEE Journal of the Electron Devices Society
Biosensing
ISFET
DNA
silicon nanowire
title Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization
title_full Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization
title_fullStr Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization
title_full_unstemmed Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization
title_short Optimum Functionalization of Si Nanowire FET for Electrical Detection of DNA Hybridization
title_sort optimum functionalization of si nanowire fet for electrical detection of dna hybridization
topic Biosensing
ISFET
DNA
silicon nanowire
url https://ieeexplore.ieee.org/document/9755958/
work_keys_str_mv AT rmidahuen optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization
AT bprevitali optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization
AT cfontelaye optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization
AT gnonglaton optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization
AT vstambouli optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization
AT sbarraud optimumfunctionalizationofsinanowirefetforelectricaldetectionofdnahybridization