Two-Stage Fast DOA Estimation Based on Directional Antennas in Conformal Uniform Circular Array

In conformal array radar, due to the directivity of antennas, the responses of the echo signals between different antennas are distinct, and some antennas cannot even receive the target echo signal. These phenomena significantly affect the accuracy of direction-of-arrival (DOA) estimation. To implem...

Full description

Bibliographic Details
Main Authors: Yao Xie, Mo Huang, Yuanyuan Zhang, Tao Duan, Changyuan Wang
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/1/276
Description
Summary:In conformal array radar, due to the directivity of antennas, the responses of the echo signals between different antennas are distinct, and some antennas cannot even receive the target echo signal. These phenomena significantly affect the accuracy of direction-of-arrival (DOA) estimation. To implement accurate DOA estimation in a conformal uniform circular array (UCA) composed of directional antennas, the two-stage fast DOA estimation algorithm is proposed. In the pre-processing stage, multi-target decoupling and target detection are mainly used to obtain the targets’ range bin indexes set; in the rough-precise DOA estimation stage, the amplitude and phase information of each antenna are used for rough DOA estimation and precise DOA estimation, respectively. Based on simulation and actual anechoic chamber radar experiments, and through quantitative analyses of the accuracy, validity and elapsed time of the two-stage fast DOA estimation algorithm compared with the directional antenna MUSIC (DA-MUSIC), sub-array MUSIC (S-MUSIC) and Capon-like algorithms, results indicate that the two-stage fast DOA estimation algorithm can rapidly and accurately estimate DOAs in a multi-target scenario without the range-angle pair-matching procedure. Lower computational complexity and superior estimation accuracy provide the two-stage fast DOA estimation algorithm a broader application prospect in the practical engineering field.
ISSN:1424-8220