Girth-Based Sequential-Recovery LRCs

In this paper, we prove that a linear block code with girth <inline-formula> <tex-math notation="LaTeX">$2(t+1)$ </tex-math></inline-formula> is a <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-sequenti...

Full description

Bibliographic Details
Main Authors: Zhi Jing, Hong-Yeop Song
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9968006/
_version_ 1811178313592340480
author Zhi Jing
Hong-Yeop Song
author_facet Zhi Jing
Hong-Yeop Song
author_sort Zhi Jing
collection DOAJ
description In this paper, we prove that a linear block code with girth <inline-formula> <tex-math notation="LaTeX">$2(t+1)$ </tex-math></inline-formula> is a <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-sequential-recovery locally repairable codes (LRCs) with locality <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> if its parity-check matrix has column weight at least 2 and row weight at most <inline-formula> <tex-math notation="LaTeX">$r+1$ </tex-math></inline-formula>. This gives a new connection between sequential-recovery LRCs and linear block codes. We also derive that the repair time of the <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-sequential-recovery LRCs from the linear block codes by this connection is at most <inline-formula> <tex-math notation="LaTeX">$\lceil t/2 \rceil $ </tex-math></inline-formula>.
first_indexed 2024-04-11T06:17:34Z
format Article
id doaj.art-8452cf445d8745548a72c50d3d51b032
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-11T06:17:34Z
publishDate 2022-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-8452cf445d8745548a72c50d3d51b0322022-12-22T04:41:01ZengIEEEIEEE Access2169-35362022-01-011012615612616010.1109/ACCESS.2022.32259059968006Girth-Based Sequential-Recovery LRCsZhi Jing0https://orcid.org/0000-0002-1444-3289Hong-Yeop Song1https://orcid.org/0000-0001-8764-9424School of Electrical and Electronic Engineering, Yonsei University, Seoul, South KoreaSchool of Electrical and Electronic Engineering, Yonsei University, Seoul, South KoreaIn this paper, we prove that a linear block code with girth <inline-formula> <tex-math notation="LaTeX">$2(t+1)$ </tex-math></inline-formula> is a <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-sequential-recovery locally repairable codes (LRCs) with locality <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> if its parity-check matrix has column weight at least 2 and row weight at most <inline-formula> <tex-math notation="LaTeX">$r+1$ </tex-math></inline-formula>. This gives a new connection between sequential-recovery LRCs and linear block codes. We also derive that the repair time of the <inline-formula> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula>-sequential-recovery LRCs from the linear block codes by this connection is at most <inline-formula> <tex-math notation="LaTeX">$\lceil t/2 \rceil $ </tex-math></inline-formula>.https://ieeexplore.ieee.org/document/9968006/Locally repairable codesjoint sequential-parallel-recoverygirthrepair time
spellingShingle Zhi Jing
Hong-Yeop Song
Girth-Based Sequential-Recovery LRCs
IEEE Access
Locally repairable codes
joint sequential-parallel-recovery
girth
repair time
title Girth-Based Sequential-Recovery LRCs
title_full Girth-Based Sequential-Recovery LRCs
title_fullStr Girth-Based Sequential-Recovery LRCs
title_full_unstemmed Girth-Based Sequential-Recovery LRCs
title_short Girth-Based Sequential-Recovery LRCs
title_sort girth based sequential recovery lrcs
topic Locally repairable codes
joint sequential-parallel-recovery
girth
repair time
url https://ieeexplore.ieee.org/document/9968006/
work_keys_str_mv AT zhijing girthbasedsequentialrecoverylrcs
AT hongyeopsong girthbasedsequentialrecoverylrcs