The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models

<p>The Earth system models (ESMs) that participated in the sixth Coupled Model Intercomparison Project (CMIP6) tend to simulate excessive cooling in surface air temperature (TAS) between 1960 and 1990. The anomalous cooling is pronounced over the Northern Hemisphere (NH) midlatitudes, coincidi...

Full description

Bibliographic Details
Main Authors: J. Zhang, K. Furtado, S. T. Turnock, J. P. Mulcahy, L. J. Wilcox, B. B. Booth, D. Sexton, T. Wu, F. Zhang, Q. Liu
Format: Article
Language:English
Published: Copernicus Publications 2021-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/18609/2021/acp-21-18609-2021.pdf
_version_ 1819100257954299904
author J. Zhang
J. Zhang
K. Furtado
K. Furtado
S. T. Turnock
S. T. Turnock
J. P. Mulcahy
J. P. Mulcahy
L. J. Wilcox
L. J. Wilcox
B. B. Booth
B. B. Booth
D. Sexton
D. Sexton
T. Wu
T. Wu
F. Zhang
F. Zhang
Q. Liu
Q. Liu
author_facet J. Zhang
J. Zhang
K. Furtado
K. Furtado
S. T. Turnock
S. T. Turnock
J. P. Mulcahy
J. P. Mulcahy
L. J. Wilcox
L. J. Wilcox
B. B. Booth
B. B. Booth
D. Sexton
D. Sexton
T. Wu
T. Wu
F. Zhang
F. Zhang
Q. Liu
Q. Liu
author_sort J. Zhang
collection DOAJ
description <p>The Earth system models (ESMs) that participated in the sixth Coupled Model Intercomparison Project (CMIP6) tend to simulate excessive cooling in surface air temperature (TAS) between 1960 and 1990. The anomalous cooling is pronounced over the Northern Hemisphere (NH) midlatitudes, coinciding with the rapid growth of anthropogenic sulfur dioxide (<span class="inline-formula">SO<sub>2</sub></span>) emissions, the primary precursor of atmospheric sulfate aerosols. Structural uncertainties between ESMs have a larger impact on the anomalous cooling than internal variability. Historical simulations with and without anthropogenic aerosol emissions indicate that the anomalous cooling in the ESMs is attributed to the higher aerosol burden in these models. The aerosol forcing sensitivity, estimated as the outgoing shortwave radiation (OSR) response to aerosol concentration changes, cannot well explain the diversity of pothole cooling (PHC) biases in the ESMs. The relative contributions to aerosol forcing sensitivity from aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs) can be estimated from CMIP6 simulations. We show that even when the aerosol forcing sensitivity is similar between ESMs, the relative contributions of ARI and ACI may be substantially different. The ACI accounts for between 64 % and 87 % of the aerosol forcing sensitivity in the models and is the main source of the aerosol forcing sensitivity differences between the ESMs. The ACI can be further decomposed into a cloud-amount term (which depends linearly on cloud fraction) and a cloud-albedo term (which is independent of cloud fraction, to the first order), with the cloud-amount term accounting for most of the inter-model differences.</p>
first_indexed 2024-12-22T00:59:54Z
format Article
id doaj.art-8456dd34b1a94abcbb90e148dd156073
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-22T00:59:54Z
publishDate 2021-12-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-8456dd34b1a94abcbb90e148dd1560732022-12-21T18:44:13ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-12-0121186091862710.5194/acp-21-18609-2021The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system modelsJ. Zhang0J. Zhang1K. Furtado2K. Furtado3S. T. Turnock4S. T. Turnock5J. P. Mulcahy6J. P. Mulcahy7L. J. Wilcox8L. J. Wilcox9B. B. Booth10B. B. Booth11D. Sexton12D. Sexton13T. Wu14T. Wu15F. Zhang16F. Zhang17Q. Liu18Q. Liu19CMA Earth System Modeling and Prediction Centre, Beijing, 100081, ChinaState Key Laboratory of Severe Weather, Beijing, 100081, ChinaState Key Laboratory of Severe Weather, Beijing, 100081, ChinaMet Office Hadley Centre, Exeter, EX1 3PB, UKState Key Laboratory of Severe Weather, Beijing, 100081, ChinaMet Office Hadley Centre, Exeter, EX1 3PB, UKState Key Laboratory of Severe Weather, Beijing, 100081, ChinaMet Office Hadley Centre, Exeter, EX1 3PB, UKMet Office Hadley Centre, Exeter, EX1 3PB, UKNational Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, UKState Key Laboratory of Severe Weather, Beijing, 100081, ChinaMet Office Hadley Centre, Exeter, EX1 3PB, UKState Key Laboratory of Severe Weather, Beijing, 100081, ChinaMet Office Hadley Centre, Exeter, EX1 3PB, UKCMA Earth System Modeling and Prediction Centre, Beijing, 100081, ChinaState Key Laboratory of Severe Weather, Beijing, 100081, ChinaCMA Earth System Modeling and Prediction Centre, Beijing, 100081, ChinaState Key Laboratory of Severe Weather, Beijing, 100081, ChinaCMA Earth System Modeling and Prediction Centre, Beijing, 100081, ChinaState Key Laboratory of Severe Weather, Beijing, 100081, China<p>The Earth system models (ESMs) that participated in the sixth Coupled Model Intercomparison Project (CMIP6) tend to simulate excessive cooling in surface air temperature (TAS) between 1960 and 1990. The anomalous cooling is pronounced over the Northern Hemisphere (NH) midlatitudes, coinciding with the rapid growth of anthropogenic sulfur dioxide (<span class="inline-formula">SO<sub>2</sub></span>) emissions, the primary precursor of atmospheric sulfate aerosols. Structural uncertainties between ESMs have a larger impact on the anomalous cooling than internal variability. Historical simulations with and without anthropogenic aerosol emissions indicate that the anomalous cooling in the ESMs is attributed to the higher aerosol burden in these models. The aerosol forcing sensitivity, estimated as the outgoing shortwave radiation (OSR) response to aerosol concentration changes, cannot well explain the diversity of pothole cooling (PHC) biases in the ESMs. The relative contributions to aerosol forcing sensitivity from aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs) can be estimated from CMIP6 simulations. We show that even when the aerosol forcing sensitivity is similar between ESMs, the relative contributions of ARI and ACI may be substantially different. The ACI accounts for between 64 % and 87 % of the aerosol forcing sensitivity in the models and is the main source of the aerosol forcing sensitivity differences between the ESMs. The ACI can be further decomposed into a cloud-amount term (which depends linearly on cloud fraction) and a cloud-albedo term (which is independent of cloud fraction, to the first order), with the cloud-amount term accounting for most of the inter-model differences.</p>https://acp.copernicus.org/articles/21/18609/2021/acp-21-18609-2021.pdf
spellingShingle J. Zhang
J. Zhang
K. Furtado
K. Furtado
S. T. Turnock
S. T. Turnock
J. P. Mulcahy
J. P. Mulcahy
L. J. Wilcox
L. J. Wilcox
B. B. Booth
B. B. Booth
D. Sexton
D. Sexton
T. Wu
T. Wu
F. Zhang
F. Zhang
Q. Liu
Q. Liu
The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
Atmospheric Chemistry and Physics
title The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
title_full The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
title_fullStr The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
title_full_unstemmed The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
title_short The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
title_sort role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the cmip6 earth system models
url https://acp.copernicus.org/articles/21/18609/2021/acp-21-18609-2021.pdf
work_keys_str_mv AT jzhang theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT jzhang theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT kfurtado theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT kfurtado theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT stturnock theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT stturnock theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT jpmulcahy theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT jpmulcahy theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT ljwilcox theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT ljwilcox theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT bbbooth theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT bbbooth theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT dsexton theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT dsexton theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT twu theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT twu theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT fzhang theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT fzhang theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT qliu theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT qliu theroleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT jzhang roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT jzhang roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT kfurtado roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT kfurtado roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT stturnock roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT stturnock roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT jpmulcahy roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT jpmulcahy roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT ljwilcox roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT ljwilcox roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT bbbooth roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT bbbooth roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT dsexton roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT dsexton roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT twu roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT twu roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT fzhang roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT fzhang roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT qliu roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels
AT qliu roleofanthropogenicaerosolsintheanomalouscoolingfrom1960to1990inthecmip6earthsystemmodels