Tocopheryl Phosphate Inhibits Rheumatoid Arthritis-Related Gene Expression In Vitro and Ameliorates Arthritic Symptoms in Mice

Anti-rheumatoid arthritis (RA) effects of α-tocopherol (α-T) have been shown in human patients in a double-blind trial. However, the effects of α-T and its derivatives on fibroblast-like synoviocytes (FLS) during the pathogenesis of RA remain unclear. In the present study, we compared the expression...

Full description

Bibliographic Details
Main Authors: Susumu Hama, Naoko Kirimura, Aki Obara, Hirokatsu Takatsu, Kentaro Kogure
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/4/1425
Description
Summary:Anti-rheumatoid arthritis (RA) effects of α-tocopherol (α-T) have been shown in human patients in a double-blind trial. However, the effects of α-T and its derivatives on fibroblast-like synoviocytes (FLS) during the pathogenesis of RA remain unclear. In the present study, we compared the expression levels of genes related to RA progression in FLS treated with α-T, succinic ester of α-T (TS), and phosphate ester of α-T (TP), as determined via RT-PCR. The mRNA levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), matrix metalloproteinase (MMP)-3, and MMP-13 were reduced by treatment with TP without cytotoxicity, while α-T and TS did not show such effects. Furthermore, intraperitoneal injection of TP ameliorated the edema of the foot and joint and improved the arthritis score in laminarin-induced RA model mice. Therefore, TP exerted anti-RA effects through by inhibiting RA-related gene expression.
ISSN:1420-3049