Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment

Summary: Human cardiac regeneration is limited by low cardiomyocyte replicative rates and progressive polyploidization by unclear mechanisms. To study this process, we engineer a human cardiomyocyte model to track replication and polyploidization using fluorescently tagged cyclin B1 and cardiac trop...

Full description

Bibliographic Details
Main Authors: Anthony M. Pettinato, Dasom Yoo, Jennifer VanOudenhove, Yu-Sheng Chen, Rachel Cohn, Feria A. Ladha, Xiulan Yang, Ketan Thakar, Robert Romano, Nicolas Legere, Emily Meredith, Paul Robson, Michael Regnier, Justin L. Cotney, Charles E. Murry, J. Travis Hinson
Format: Article
Language:English
Published: Elsevier 2021-05-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124721004216
Description
Summary:Summary: Human cardiac regeneration is limited by low cardiomyocyte replicative rates and progressive polyploidization by unclear mechanisms. To study this process, we engineer a human cardiomyocyte model to track replication and polyploidization using fluorescently tagged cyclin B1 and cardiac troponin T. Using time-lapse imaging, in vitro cardiomyocyte replication patterns recapitulate the progressive mononuclear polyploidization and replicative arrest observed in vivo. Single-cell transcriptomics and chromatin state analyses reveal that polyploidization is preceded by sarcomere assembly, enhanced oxidative metabolism, a DNA damage response, and p53 activation. CRISPR knockout screening reveals p53 as a driver of cell-cycle arrest and polyploidization. Inhibiting sarcomere function, or scavenging ROS, inhibits cell-cycle arrest and polyploidization. Finally, we show that cardiomyocyte engraftment in infarcted rat hearts is enhanced 4-fold by the increased proliferation of troponin-knockout cardiomyocytes. Thus, the sarcomere inhibits cell division through a DNA damage response that can be targeted to improve cardiomyocyte replacement strategies.
ISSN:2211-1247