Summary: | Large-scale integration of PV generators in distribution grids will impair the voltage stability due to the stochastic and fluctuated PV power generation. To tame the volatile PV power generation, battery energy storage systems (BESS) are deployed as an effective yet expensive power buffering mechanism. In this paper, a dual ascent-based voltage optimization control is proposed to achieve the concurrent regulation of battery State-of-Charge (SoC), nodal voltages, and distribution loss. This control features the limited dependence on the communication network with information interaction between neighboring nodes. Besides, it can achieve the optimal power flow minimizing the distribution loss while maintaining the BESS SoC within a healthy range. The derivation of the control framework is provided, and comparative simulations in the IEEE 37-node distribution system are performed to validate the effectiveness of the proposed control algorithm.
|