Numerical solution for the (2+1) dimensional Sobolev and regularized long wave equations arise in fluid mechanics via wavelet technique

This article proposed an efficient numerical technique for the solution of (2+1) dimensional Sobolev and regularized long wave equations that arise in fluid mechanics using the Laguerre wavelet collocation method. Five examples are illustrated to inspect the proposed technique efficiency, and conver...

Full description

Bibliographic Details
Main Author: Kumbinarasaiah S.
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:Partial Differential Equations in Applied Mathematics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666818120300164
Description
Summary:This article proposed an efficient numerical technique for the solution of (2+1) dimensional Sobolev and regularized long wave equations that arise in fluid mechanics using the Laguerre wavelet collocation method. Five examples are illustrated to inspect the proposed technique efficiency, and convergence analysis is discussed in terms of a theorem. Here, the Sobolev and regularized long wave equations are converted into a system of algebraic equations using the properties of Laguerre wavelet, and solutions obtained by the proposed scheme are more accurate, and they are compared with the analytical solution and other methods in the literature by calculating L2and L∞Errors.
ISSN:2666-8181