Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $

By using Nevanlinna of the value distribution of meromorphic functions, we investigate the transcendental meromorphic solutions of the non-linear differential equation $ \begin{equation*} f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} $ where $...

Full description

Bibliographic Details
Main Authors: Linkui Gao, Junyang Gao
Format: Article
Language:English
Published: AIMS Press 2022-08-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20221007?viewType=HTML
_version_ 1817998656834371584
author Linkui Gao
Junyang Gao
author_facet Linkui Gao
Junyang Gao
author_sort Linkui Gao
collection DOAJ
description By using Nevanlinna of the value distribution of meromorphic functions, we investigate the transcendental meromorphic solutions of the non-linear differential equation $ \begin{equation*} f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} $ where $ P_{d}(f) $ is a differential polynomial in $ f $ of degree $ d(0\leq d\leq n-3) $ with small meromorphic coefficients and $ p_{i}, \alpha_{i}(i = 1, 2, 3) $ are nonzero constants. We show that the solutions of this type equation are exponential sums and they are in $ \Gamma_{0}\cup\Gamma_{1}\cup\Gamma_{3} $ which will be given in Section $ 1 $. Moreover, we give some examples to illustrate our results.
first_indexed 2024-04-14T02:55:54Z
format Article
id doaj.art-8490b8932dad467d9e0f2ed118af6fd8
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-14T02:55:54Z
publishDate 2022-08-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-8490b8932dad467d9e0f2ed118af6fd82022-12-22T02:16:06ZengAIMS PressAIMS Mathematics2473-69882022-08-01710182971831010.3934/math.20221007Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $Linkui Gao0Junyang Gao1School of Science, China University of Mining and Technology, Beijing 100083, ChinaSchool of Science, China University of Mining and Technology, Beijing 100083, ChinaBy using Nevanlinna of the value distribution of meromorphic functions, we investigate the transcendental meromorphic solutions of the non-linear differential equation $ \begin{equation*} f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} $ where $ P_{d}(f) $ is a differential polynomial in $ f $ of degree $ d(0\leq d\leq n-3) $ with small meromorphic coefficients and $ p_{i}, \alpha_{i}(i = 1, 2, 3) $ are nonzero constants. We show that the solutions of this type equation are exponential sums and they are in $ \Gamma_{0}\cup\Gamma_{1}\cup\Gamma_{3} $ which will be given in Section $ 1 $. Moreover, we give some examples to illustrate our results.https://www.aimspress.com/article/doi/10.3934/math.20221007?viewType=HTMLnevanlinna theorycomplex differential equationsexponential sumsmeromorphic solutions
spellingShingle Linkui Gao
Junyang Gao
Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $
AIMS Mathematics
nevanlinna theory
complex differential equations
exponential sums
meromorphic solutions
title Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $
title_full Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $
title_fullStr Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $
title_full_unstemmed Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $
title_short Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $
title_sort meromorphic solutions of f n p d f p 1 e alpha 1 z p 2 e alpha 2 z p 3 e alpha 3 z
topic nevanlinna theory
complex differential equations
exponential sums
meromorphic solutions
url https://www.aimspress.com/article/doi/10.3934/math.20221007?viewType=HTML
work_keys_str_mv AT linkuigao meromorphicsolutionsoffnpdfp1ealpha1zp2ealpha2zp3ealpha3z
AT junyanggao meromorphicsolutionsoffnpdfp1ealpha1zp2ealpha2zp3ealpha3z