Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions

In this paper, a new approach to find exact solutions is carried out for a generalized unsteady magnetohydrodynamic transport of a rate-type fluid near an unbounded upright plate, which is analyzed for ramped-wall temperature and velocity with constant concentration. The vertical plate is suspended...

Full description

Bibliographic Details
Main Authors: Muhammad Bilal Riaz, Aziz-Ur Rehman, Jan Awrejcewicz, Ali Akgül
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/4/248
_version_ 1797504501616214016
author Muhammad Bilal Riaz
Aziz-Ur Rehman
Jan Awrejcewicz
Ali Akgül
author_facet Muhammad Bilal Riaz
Aziz-Ur Rehman
Jan Awrejcewicz
Ali Akgül
author_sort Muhammad Bilal Riaz
collection DOAJ
description In this paper, a new approach to find exact solutions is carried out for a generalized unsteady magnetohydrodynamic transport of a rate-type fluid near an unbounded upright plate, which is analyzed for ramped-wall temperature and velocity with constant concentration. The vertical plate is suspended in a porous medium and encounters the effects of radiation. An innovative definition of the time-fractional operator in power-law-kernel form is implemented to hypothesize the constitutive mass, energy, and momentum equations. The Laplace integral transformation technique is applied on a dimensionless form of governing partial differential equations by introducing some non-dimensional suitable parameters to establish the exact expressions in terms of special functions for ramped velocity, temperature, and constant-concentration fields. In order to validate the problem, the absence of the mass Grashof parameter led to the investigated solutions obtaining good agreement in existing literature. Additionally, several system parameters were used, such as as magnetic value <i>M</i>, Prandtl value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math></inline-formula>, Maxwell parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, dimensionless time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, Schmidt number “<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>c</mi></mrow></semantics></math></inline-formula>”, fractional parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, andMass and Thermal Grashof numbers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>m</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>r</mi></mrow></semantics></math></inline-formula>, respectively, to examine their impacts on velocity, wall temperature, and constant concentration. Results are also discussed in detail and demonstrated graphically via Mathcad-15 software. A comprehensive comparative study between fractional and non-fractional models describes that the fractional model elucidate the memory effects more efficiently.
first_indexed 2024-03-10T04:05:29Z
format Article
id doaj.art-8494bcaa3cc6400cb185a5dcd51473fe
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-10T04:05:29Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-8494bcaa3cc6400cb185a5dcd51473fe2023-11-23T08:24:19ZengMDPI AGFractal and Fractional2504-31102021-12-015424810.3390/fractalfract5040248Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special FunctionsMuhammad Bilal Riaz0Aziz-Ur Rehman1Jan Awrejcewicz2Ali Akgül3Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, PolandDepartment of Mathematics, University of Management and Technology, Lahore 54770, PakistanDepartment of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, PolandDepartment of Mathematics, Siirt University, Siirt 56100, TurkeyIn this paper, a new approach to find exact solutions is carried out for a generalized unsteady magnetohydrodynamic transport of a rate-type fluid near an unbounded upright plate, which is analyzed for ramped-wall temperature and velocity with constant concentration. The vertical plate is suspended in a porous medium and encounters the effects of radiation. An innovative definition of the time-fractional operator in power-law-kernel form is implemented to hypothesize the constitutive mass, energy, and momentum equations. The Laplace integral transformation technique is applied on a dimensionless form of governing partial differential equations by introducing some non-dimensional suitable parameters to establish the exact expressions in terms of special functions for ramped velocity, temperature, and constant-concentration fields. In order to validate the problem, the absence of the mass Grashof parameter led to the investigated solutions obtaining good agreement in existing literature. Additionally, several system parameters were used, such as as magnetic value <i>M</i>, Prandtl value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math></inline-formula>, Maxwell parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, dimensionless time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, Schmidt number “<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>c</mi></mrow></semantics></math></inline-formula>”, fractional parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, andMass and Thermal Grashof numbers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>m</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>r</mi></mrow></semantics></math></inline-formula>, respectively, to examine their impacts on velocity, wall temperature, and constant concentration. Results are also discussed in detail and demonstrated graphically via Mathcad-15 software. A comprehensive comparative study between fractional and non-fractional models describes that the fractional model elucidate the memory effects more efficiently.https://www.mdpi.com/2504-3110/5/4/248power law kernelfractional derivativememory effectsspecial functions base solutionsMaxwell fluidramped conditions
spellingShingle Muhammad Bilal Riaz
Aziz-Ur Rehman
Jan Awrejcewicz
Ali Akgül
Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions
Fractal and Fractional
power law kernel
fractional derivative
memory effects
special functions base solutions
Maxwell fluid
ramped conditions
title Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions
title_full Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions
title_fullStr Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions
title_full_unstemmed Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions
title_short Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions
title_sort power law kernel analysis of mhd maxwell fluid with ramped boundary conditions transport phenomena solutions based on special functions
topic power law kernel
fractional derivative
memory effects
special functions base solutions
Maxwell fluid
ramped conditions
url https://www.mdpi.com/2504-3110/5/4/248
work_keys_str_mv AT muhammadbilalriaz powerlawkernelanalysisofmhdmaxwellfluidwithrampedboundaryconditionstransportphenomenasolutionsbasedonspecialfunctions
AT azizurrehman powerlawkernelanalysisofmhdmaxwellfluidwithrampedboundaryconditionstransportphenomenasolutionsbasedonspecialfunctions
AT janawrejcewicz powerlawkernelanalysisofmhdmaxwellfluidwithrampedboundaryconditionstransportphenomenasolutionsbasedonspecialfunctions
AT aliakgul powerlawkernelanalysisofmhdmaxwellfluidwithrampedboundaryconditionstransportphenomenasolutionsbasedonspecialfunctions