Biharmonic system with Hartree-type critical nonlinearity
In this article, we investigate the multiplicity results of the following biharmonic Choquard system involving critical nonlinearities with sign-changing weight function: \begin{align*} \begin{cases} \Delta^{2}u = \lambda F(x) |u|^{r-2}u+ H(x)\left(\displaystyle\int_{\Omega}\frac{H(y)|v(y)|^{2_\a...
Huvudupphovsmän: | Anu Rani, Sarika Goyal |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
University of Szeged
2023-01-01
|
Serie: | Electronic Journal of Qualitative Theory of Differential Equations |
Ämnen: | |
Länkar: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=9928 |
Liknande verk
Liknande verk
-
On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
av: Chao Ji, et al.
Publicerad: (2012-01-01) -
Polyharmonic systems involving critical nonlinearities with sign-changing weight functions
av: Anu Rani, et al.
Publicerad: (2020-12-01) -
Multiplicity of positive solutions for a Navier boundary-value problem involving the p-biharmonic with critical exponent
av: Ying Shen, et al.
Publicerad: (2011-04-01) -
Fractional elliptic equations with sign-changing and singular nonlinearity
av: Sarika Goyal, et al.
Publicerad: (2016-06-01) -
Multiplicity results involving p-biharmonic Kirchhoff-type problems
av: Ramzi Alsaedi
Publicerad: (2020-07-01)