Analytic periods via twisted symmetric squares

Abstract We study the symmetric square of Picard-Fuchs operators of genus one curves and the thereby induced generalized Clausen identities. This allows the computation of analytic expressions for the periods of all one-parameter K3 manifolds in terms of elliptic integrals. The resulting expressions...

Full description

Bibliographic Details
Main Authors: Rafael Álvarez-García, Lorenz Schlechter
Format: Article
Language:English
Published: SpringerOpen 2022-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP07(2022)024
_version_ 1828303741415063552
author Rafael Álvarez-García
Lorenz Schlechter
author_facet Rafael Álvarez-García
Lorenz Schlechter
author_sort Rafael Álvarez-García
collection DOAJ
description Abstract We study the symmetric square of Picard-Fuchs operators of genus one curves and the thereby induced generalized Clausen identities. This allows the computation of analytic expressions for the periods of all one-parameter K3 manifolds in terms of elliptic integrals. The resulting expressions are globally valid throughout the moduli space and allow the explicit inversion of the mirror map and the exact computation of distances, useful for checks of the Swampland Distance Conjecture. We comment on the generalization to multi-parameter models and provide a two-parameter example.
first_indexed 2024-04-13T13:59:59Z
format Article
id doaj.art-84c153ef65c84b80aadab2ab665d889b
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-04-13T13:59:59Z
publishDate 2022-07-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-84c153ef65c84b80aadab2ab665d889b2022-12-22T02:44:05ZengSpringerOpenJournal of High Energy Physics1029-84792022-07-012022713110.1007/JHEP07(2022)024Analytic periods via twisted symmetric squaresRafael Álvarez-García0Lorenz Schlechter1II. Institut für Theoretische Physik, Universität HamburgInstitute for Theoretical Physics, Utrecht UniversityAbstract We study the symmetric square of Picard-Fuchs operators of genus one curves and the thereby induced generalized Clausen identities. This allows the computation of analytic expressions for the periods of all one-parameter K3 manifolds in terms of elliptic integrals. The resulting expressions are globally valid throughout the moduli space and allow the explicit inversion of the mirror map and the exact computation of distances, useful for checks of the Swampland Distance Conjecture. We comment on the generalization to multi-parameter models and provide a two-parameter example.https://doi.org/10.1007/JHEP07(2022)024String and Brane PhenomenologyDifferential and Algebraic Geometry
spellingShingle Rafael Álvarez-García
Lorenz Schlechter
Analytic periods via twisted symmetric squares
Journal of High Energy Physics
String and Brane Phenomenology
Differential and Algebraic Geometry
title Analytic periods via twisted symmetric squares
title_full Analytic periods via twisted symmetric squares
title_fullStr Analytic periods via twisted symmetric squares
title_full_unstemmed Analytic periods via twisted symmetric squares
title_short Analytic periods via twisted symmetric squares
title_sort analytic periods via twisted symmetric squares
topic String and Brane Phenomenology
Differential and Algebraic Geometry
url https://doi.org/10.1007/JHEP07(2022)024
work_keys_str_mv AT rafaelalvarezgarcia analyticperiodsviatwistedsymmetricsquares
AT lorenzschlechter analyticperiodsviatwistedsymmetricsquares