Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition

In this paper, we study the following fractional Schrödinger-Poisson system $ \begin{equation*} \begin{cases} (-\Delta)^su+V(x)u+\phi u = f(x, u)& x\in\mathbb{R}^3, \\ (-\Delta)^s\phi = u^2& x\in\mathbb{R}^3. \end{cases} \end{equation*} $ Using the variant fountain theorem intr...

Full description

Bibliographic Details
Main Author: Tiankun Jin
Format: Article
Language:English
Published: AIMS Press 2021-06-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021525?viewType=HTML
Description
Summary:In this paper, we study the following fractional Schrödinger-Poisson system $ \begin{equation*} \begin{cases} (-\Delta)^su+V(x)u+\phi u = f(x, u)&amp; x\in\mathbb{R}^3, \\ (-\Delta)^s\phi = u^2&amp; x\in\mathbb{R}^3. \end{cases} \end{equation*} $ Using the variant fountain theorem introduced by Zou <sup>[<xref ref-type="bibr" rid="b32">32</xref>]</sup>, we get the existence of infinitely many large energy solutions without the Ambrosetti-Rabinowitz's 4-superlinearity condition. Recent results from the literature are extended and improved.
ISSN:2473-6988