Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition

In this paper, we study the following fractional Schrödinger-Poisson system $ \begin{equation*} \begin{cases} (-\Delta)^su+V(x)u+\phi u = f(x, u)& x\in\mathbb{R}^3, \\ (-\Delta)^s\phi = u^2& x\in\mathbb{R}^3. \end{cases} \end{equation*} $ Using the variant fountain theorem intr...

Full description

Bibliographic Details
Main Author: Tiankun Jin
Format: Article
Language:English
Published: AIMS Press 2021-06-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021525?viewType=HTML
_version_ 1818901246670536704
author Tiankun Jin
author_facet Tiankun Jin
author_sort Tiankun Jin
collection DOAJ
description In this paper, we study the following fractional Schrödinger-Poisson system $ \begin{equation*} \begin{cases} (-\Delta)^su+V(x)u+\phi u = f(x, u)&amp; x\in\mathbb{R}^3, \\ (-\Delta)^s\phi = u^2&amp; x\in\mathbb{R}^3. \end{cases} \end{equation*} $ Using the variant fountain theorem introduced by Zou <sup>[<xref ref-type="bibr" rid="b32">32</xref>]</sup>, we get the existence of infinitely many large energy solutions without the Ambrosetti-Rabinowitz's 4-superlinearity condition. Recent results from the literature are extended and improved.
first_indexed 2024-12-19T20:16:43Z
format Article
id doaj.art-84c35a75710f4bcaa3d365e265814024
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-19T20:16:43Z
publishDate 2021-06-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-84c35a75710f4bcaa3d365e2658140242022-12-21T20:07:08ZengAIMS PressAIMS Mathematics2473-69882021-06-01689048905810.3934/math.2021525Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) conditionTiankun Jin0College of Teacher Education, Daqing Normal University, Daqing 163000, ChinaIn this paper, we study the following fractional Schrödinger-Poisson system $ \begin{equation*} \begin{cases} (-\Delta)^su+V(x)u+\phi u = f(x, u)&amp; x\in\mathbb{R}^3, \\ (-\Delta)^s\phi = u^2&amp; x\in\mathbb{R}^3. \end{cases} \end{equation*} $ Using the variant fountain theorem introduced by Zou <sup>[<xref ref-type="bibr" rid="b32">32</xref>]</sup>, we get the existence of infinitely many large energy solutions without the Ambrosetti-Rabinowitz's 4-superlinearity condition. Recent results from the literature are extended and improved.https://www.aimspress.com/article/doi/10.3934/math.2021525?viewType=HTMLfractional schrödinger-poisson equationvariant fountain theoremvariational methods
spellingShingle Tiankun Jin
Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition
AIMS Mathematics
fractional schrödinger-poisson equation
variant fountain theorem
variational methods
title Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition
title_full Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition
title_fullStr Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition
title_full_unstemmed Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition
title_short Multiplicity of solutions for a fractional Schrödinger-Poisson system without (PS) condition
title_sort multiplicity of solutions for a fractional schrodinger poisson system without ps condition
topic fractional schrödinger-poisson equation
variant fountain theorem
variational methods
url https://www.aimspress.com/article/doi/10.3934/math.2021525?viewType=HTML
work_keys_str_mv AT tiankunjin multiplicityofsolutionsforafractionalschrodingerpoissonsystemwithoutpscondition