Development Process, Quantitative Models, and Future Directions in Driving Analysis of Urban Expansion

Driving analysis of urban expansion (DAUE) is usually implemented to identify the driving factors and their corresponding driving effects/mechanisms for the expansion processes of urban land, aiming to provide scientific guidance for urban planning and management. Based on a thorough analysis and su...

Full description

Bibliographic Details
Main Authors: Xuefeng Guan, Jingbo Li, Changlan Yang, Weiran Xing
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/12/4/174
Description
Summary:Driving analysis of urban expansion (DAUE) is usually implemented to identify the driving factors and their corresponding driving effects/mechanisms for the expansion processes of urban land, aiming to provide scientific guidance for urban planning and management. Based on a thorough analysis and summarization of the development process and quantitative models, four major limitations in existing DAUE studies have been uncovered: (1) the interactions in hierarchical urban systems have not been fully explored; (2) the employed data cannot fully depict urban dynamic through finer social perspectives; (3) the employed models cannot deal with high-level feature correlations; and (4) the simulation and analysis models are still not intrinsically integrated. Four future directions are thus proposed: (1) to pay attention to the hierarchical characteristics of urban systems and conduct multi-scale research on the complex interactions within them to capture dynamic features; (2) to leverage remote sensing data so as to obtain diverse urban expansion data and assimilate multi-source spatiotemporal big data to supplement novel socio-economic driving factors; (3) to integrate with interpretable data-driven machine learning techniques to bolster the performance and reliability of DAUE models; and (4) to construct mechanism-coupled urban simulation to achieve a complementary enhancement and facilitate theory development and testing for urban land systems.
ISSN:2220-9964