Real‐time multi‐window stereo matching algorithm with fuzzy logic

Abstract Stereo matching obtains a depth map called a disparity map that indicates or shows the positions of the objects in a scene. To estimate a disparity map, the most popular trend consists of comparing two images (left‐right) from two different points from the same scene. Unfortunately, small w...

Full description

Bibliographic Details
Main Authors: Héctor‐Daniel Vázquez‐Delgado, Madaín Pérez‐Patricio, Abiel Aguilar‐González, Miguel‐Octavio Arias‐Estrada, Marco‐Antonio Palacios‐Ramos, Jorge Luis Camas‐Anzueto, Antonio Pérez‐Cruz, Sabino Velázquez‐Trujillo
Format: Article
Language:English
Published: Wiley 2021-04-01
Series:IET Computer Vision
Online Access:https://doi.org/10.1049/cvi2.12031
_version_ 1798037184376209408
author Héctor‐Daniel Vázquez‐Delgado
Madaín Pérez‐Patricio
Abiel Aguilar‐González
Miguel‐Octavio Arias‐Estrada
Marco‐Antonio Palacios‐Ramos
Jorge Luis Camas‐Anzueto
Antonio Pérez‐Cruz
Sabino Velázquez‐Trujillo
author_facet Héctor‐Daniel Vázquez‐Delgado
Madaín Pérez‐Patricio
Abiel Aguilar‐González
Miguel‐Octavio Arias‐Estrada
Marco‐Antonio Palacios‐Ramos
Jorge Luis Camas‐Anzueto
Antonio Pérez‐Cruz
Sabino Velázquez‐Trujillo
author_sort Héctor‐Daniel Vázquez‐Delgado
collection DOAJ
description Abstract Stereo matching obtains a depth map called a disparity map that indicates or shows the positions of the objects in a scene. To estimate a disparity map, the most popular trend consists of comparing two images (left‐right) from two different points from the same scene. Unfortunately, small window sizes are suitable to preserve the edges, while large window sizes are required in homogeneous areas. To solve this problem, in this article, a novel real‐time stereo matching algorithm embedded in an FPGA is proposed. The approach consists of estimating disparity maps with different window sizes by using the sum of absolute differences (SAD) as a local correlation metric. Once the disparity maps are obtained, the left‐right consistency for each window size is computed. At the end of this stage, the centre pixel deviation is estimated through a 5 × 5 window and the Sobel gradient is extracted from the left image. Finally, both parameters are processed by a Fuzzy Inference System (FIS), which combines the calculated disparities and generates a final disparity map. An architecture embedded in FPGA is established and hardware acceleration strategies are discussed. Experimental results demonstrated that this algorithmic formulation provides promising results compared with the current state of the art.
first_indexed 2024-04-11T21:23:07Z
format Article
id doaj.art-84e5a7af9ca049d29448c76ed7bb7792
institution Directory Open Access Journal
issn 1751-9632
1751-9640
language English
last_indexed 2024-04-11T21:23:07Z
publishDate 2021-04-01
publisher Wiley
record_format Article
series IET Computer Vision
spelling doaj.art-84e5a7af9ca049d29448c76ed7bb77922022-12-22T04:02:32ZengWileyIET Computer Vision1751-96321751-96402021-04-0115320822310.1049/cvi2.12031Real‐time multi‐window stereo matching algorithm with fuzzy logicHéctor‐Daniel Vázquez‐Delgado0Madaín Pérez‐Patricio1Abiel Aguilar‐González2Miguel‐Octavio Arias‐Estrada3Marco‐Antonio Palacios‐Ramos4Jorge Luis Camas‐Anzueto5Antonio Pérez‐Cruz6Sabino Velázquez‐Trujillo7Tecnológico Nacional de México/IT de Tuxtla Gutiérrez Tuxtla Gutiérrez Chiapas MéxicoTecnológico Nacional de México/IT de Tuxtla Gutiérrez Tuxtla Gutiérrez Chiapas MéxicoTecnológico Nacional de México/IT de Tuxtla Gutiérrez Tuxtla Gutiérrez Chiapas MéxicoInstituto Nacional de Astrofísica Óptica y Electrónica Puebla MéxicoTecnológico Nacional de México/IT de Tuxtla Gutiérrez Tuxtla Gutiérrez Chiapas MéxicoTecnológico Nacional de México/IT de Tuxtla Gutiérrez Tuxtla Gutiérrez Chiapas MéxicoTecnológico Nacional de México/IT de Tuxtla Gutiérrez Tuxtla Gutiérrez Chiapas MéxicoTecnológico Nacional de México/IT de Tuxtla Gutiérrez Tuxtla Gutiérrez Chiapas MéxicoAbstract Stereo matching obtains a depth map called a disparity map that indicates or shows the positions of the objects in a scene. To estimate a disparity map, the most popular trend consists of comparing two images (left‐right) from two different points from the same scene. Unfortunately, small window sizes are suitable to preserve the edges, while large window sizes are required in homogeneous areas. To solve this problem, in this article, a novel real‐time stereo matching algorithm embedded in an FPGA is proposed. The approach consists of estimating disparity maps with different window sizes by using the sum of absolute differences (SAD) as a local correlation metric. Once the disparity maps are obtained, the left‐right consistency for each window size is computed. At the end of this stage, the centre pixel deviation is estimated through a 5 × 5 window and the Sobel gradient is extracted from the left image. Finally, both parameters are processed by a Fuzzy Inference System (FIS), which combines the calculated disparities and generates a final disparity map. An architecture embedded in FPGA is established and hardware acceleration strategies are discussed. Experimental results demonstrated that this algorithmic formulation provides promising results compared with the current state of the art.https://doi.org/10.1049/cvi2.12031
spellingShingle Héctor‐Daniel Vázquez‐Delgado
Madaín Pérez‐Patricio
Abiel Aguilar‐González
Miguel‐Octavio Arias‐Estrada
Marco‐Antonio Palacios‐Ramos
Jorge Luis Camas‐Anzueto
Antonio Pérez‐Cruz
Sabino Velázquez‐Trujillo
Real‐time multi‐window stereo matching algorithm with fuzzy logic
IET Computer Vision
title Real‐time multi‐window stereo matching algorithm with fuzzy logic
title_full Real‐time multi‐window stereo matching algorithm with fuzzy logic
title_fullStr Real‐time multi‐window stereo matching algorithm with fuzzy logic
title_full_unstemmed Real‐time multi‐window stereo matching algorithm with fuzzy logic
title_short Real‐time multi‐window stereo matching algorithm with fuzzy logic
title_sort real time multi window stereo matching algorithm with fuzzy logic
url https://doi.org/10.1049/cvi2.12031
work_keys_str_mv AT hectordanielvazquezdelgado realtimemultiwindowstereomatchingalgorithmwithfuzzylogic
AT madainperezpatricio realtimemultiwindowstereomatchingalgorithmwithfuzzylogic
AT abielaguilargonzalez realtimemultiwindowstereomatchingalgorithmwithfuzzylogic
AT migueloctavioariasestrada realtimemultiwindowstereomatchingalgorithmwithfuzzylogic
AT marcoantoniopalaciosramos realtimemultiwindowstereomatchingalgorithmwithfuzzylogic
AT jorgeluiscamasanzueto realtimemultiwindowstereomatchingalgorithmwithfuzzylogic
AT antonioperezcruz realtimemultiwindowstereomatchingalgorithmwithfuzzylogic
AT sabinovelazqueztrujillo realtimemultiwindowstereomatchingalgorithmwithfuzzylogic