Maximum modulus in a bidisc of analytic functions of bounded $<b> L</b>$-index and an analogue of Hayman's theorem

We generalize some criteria of boundedness of $\mathbf{L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Haym...

Full description

Bibliographic Details
Main Authors: Andriy Bandura, Nataliia Petrechko, Oleh Skaskiv
Format: Article
Language:English
Published: Institute of Mathematics of the Czech Academy of Science 2018-12-01
Series:Mathematica Bohemica
Subjects:
Online Access:http://mb.math.cas.cz/full/143/4/mb143_4_2.pdf
_version_ 1819240066220818432
author Andriy Bandura
Nataliia Petrechko
Oleh Skaskiv
author_facet Andriy Bandura
Nataliia Petrechko
Oleh Skaskiv
author_sort Andriy Bandura
collection DOAJ
description We generalize some criteria of boundedness of $\mathbf{L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman's theorem).
first_indexed 2024-12-23T14:02:06Z
format Article
id doaj.art-84f22101844549fe8d1943888e7dcf56
institution Directory Open Access Journal
issn 0862-7959
2464-7136
language English
last_indexed 2024-12-23T14:02:06Z
publishDate 2018-12-01
publisher Institute of Mathematics of the Czech Academy of Science
record_format Article
series Mathematica Bohemica
spelling doaj.art-84f22101844549fe8d1943888e7dcf562022-12-21T17:44:18ZengInstitute of Mathematics of the Czech Academy of ScienceMathematica Bohemica0862-79592464-71362018-12-01143433935410.21136/MB.2017.0110-16MB.2017.0110-16Maximum modulus in a bidisc of analytic functions of bounded $<b> L</b>$-index and an analogue of Hayman's theoremAndriy BanduraNataliia PetrechkoOleh SkaskivWe generalize some criteria of boundedness of $\mathbf{L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman's theorem).http://mb.math.cas.cz/full/143/4/mb143_4_2.pdf analytic function bidisc bounded ${\mathbf L}$-index in joint variables maximum modulus partial derivative Cauchy's integral formula
spellingShingle Andriy Bandura
Nataliia Petrechko
Oleh Skaskiv
Maximum modulus in a bidisc of analytic functions of bounded $<b> L</b>$-index and an analogue of Hayman's theorem
Mathematica Bohemica
analytic function
bidisc
bounded ${\mathbf L}$-index in joint variables
maximum modulus
partial derivative
Cauchy's integral formula
title Maximum modulus in a bidisc of analytic functions of bounded $<b> L</b>$-index and an analogue of Hayman's theorem
title_full Maximum modulus in a bidisc of analytic functions of bounded $<b> L</b>$-index and an analogue of Hayman's theorem
title_fullStr Maximum modulus in a bidisc of analytic functions of bounded $<b> L</b>$-index and an analogue of Hayman's theorem
title_full_unstemmed Maximum modulus in a bidisc of analytic functions of bounded $<b> L</b>$-index and an analogue of Hayman's theorem
title_short Maximum modulus in a bidisc of analytic functions of bounded $<b> L</b>$-index and an analogue of Hayman's theorem
title_sort maximum modulus in a bidisc of analytic functions of bounded b l b index and an analogue of hayman s theorem
topic analytic function
bidisc
bounded ${\mathbf L}$-index in joint variables
maximum modulus
partial derivative
Cauchy's integral formula
url http://mb.math.cas.cz/full/143/4/mb143_4_2.pdf
work_keys_str_mv AT andriybandura maximummodulusinabidiscofanalyticfunctionsofboundedblbindexandananalogueofhaymanstheorem
AT nataliiapetrechko maximummodulusinabidiscofanalyticfunctionsofboundedblbindexandananalogueofhaymanstheorem
AT olehskaskiv maximummodulusinabidiscofanalyticfunctionsofboundedblbindexandananalogueofhaymanstheorem