Auditory Device Voice Activity Detection Based on Statistical Likelihood-Ratio Order Statistics

This paper proposes a technique for improving statistical-model-based voice activity detection (VAD) in noisy environments to be applied in an auditory hearing aid. The proposed method is implemented for a uniform polyphase discrete Fourier transform filter bank satisfying an auditory device time la...

Full description

Bibliographic Details
Main Author: Seon Man Kim
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/15/5026
Description
Summary:This paper proposes a technique for improving statistical-model-based voice activity detection (VAD) in noisy environments to be applied in an auditory hearing aid. The proposed method is implemented for a uniform polyphase discrete Fourier transform filter bank satisfying an auditory device time latency of 8 ms. The proposed VAD technique provides an online unified framework to overcome the frequent false rejection of the statistical-model-based likelihood-ratio test (LRT) in noisy environments. The method is based on the observation that the sparseness of speech and background noise cause high false-rejection error rates in statistical LRT-based VAD—the false rejection rate increases as the sparseness increases. We demonstrate that the false-rejection error rate can be reduced by incorporating likelihood-ratio order statistics into a conventional LRT VAD. We confirm experimentally that the proposed method relatively reduces the average detection error rate by 15.8% compared to a conventional VAD with only minimal change in the false acceptance probability for three different noise conditions whose signal-to-noise ratio ranges from 0 to 20 dB.
ISSN:2076-3417