Intrinsic fractional Taylor formula

We consider a class of non-local ultraparabolic Kolmogorov operators and a suitable fractional Holder spaces that take into account the intrinsic sub-riemannian geometry induced by the operators. We prove an intrinsic fractional Taylor formula in such spaces with global bounds for the remainder give...

Full description

Bibliographic Details
Main Author: Maria Manfredini
Format: Article
Language:English
Published: University of Bologna 2022-01-01
Series:Bruno Pini Mathematical Analysis Seminar
Subjects:
Online Access:https://mathematicalanalysis.unibo.it/article/view/14178
_version_ 1819005175560404992
author Maria Manfredini
author_facet Maria Manfredini
author_sort Maria Manfredini
collection DOAJ
description We consider a class of non-local ultraparabolic Kolmogorov operators and a suitable fractional Holder spaces that take into account the intrinsic sub-riemannian geometry induced by the operators. We prove an intrinsic fractional Taylor formula in such spaces with global bounds for the remainder given in terms of the norm naturally associated to the differential operator.
first_indexed 2024-12-20T23:48:37Z
format Article
id doaj.art-85278a57a6bc40d58ab2772cf91de7bb
institution Directory Open Access Journal
issn 2240-2829
language English
last_indexed 2024-12-20T23:48:37Z
publishDate 2022-01-01
publisher University of Bologna
record_format Article
series Bruno Pini Mathematical Analysis Seminar
spelling doaj.art-85278a57a6bc40d58ab2772cf91de7bb2022-12-21T19:22:53ZengUniversity of BolognaBruno Pini Mathematical Analysis Seminar2240-28292022-01-0112111410.6092/issn.2240-2829/1417812501Intrinsic fractional Taylor formulaMaria Manfredini0Università di Modena e Reggio EmiliaWe consider a class of non-local ultraparabolic Kolmogorov operators and a suitable fractional Holder spaces that take into account the intrinsic sub-riemannian geometry induced by the operators. We prove an intrinsic fractional Taylor formula in such spaces with global bounds for the remainder given in terms of the norm naturally associated to the differential operator.https://mathematicalanalysis.unibo.it/article/view/14178non-local kolmogorov operatorhypoelliptic operatorhormander's conditionintrinsic taylor formula
spellingShingle Maria Manfredini
Intrinsic fractional Taylor formula
Bruno Pini Mathematical Analysis Seminar
non-local kolmogorov operator
hypoelliptic operator
hormander's condition
intrinsic taylor formula
title Intrinsic fractional Taylor formula
title_full Intrinsic fractional Taylor formula
title_fullStr Intrinsic fractional Taylor formula
title_full_unstemmed Intrinsic fractional Taylor formula
title_short Intrinsic fractional Taylor formula
title_sort intrinsic fractional taylor formula
topic non-local kolmogorov operator
hypoelliptic operator
hormander's condition
intrinsic taylor formula
url https://mathematicalanalysis.unibo.it/article/view/14178
work_keys_str_mv AT mariamanfredini intrinsicfractionaltaylorformula