Tracking of magnetic flux concentrations over a five-day observation, and an insight into surface magnetic flux transport

The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squared displacement of magnetic flux concentrations o...

Full description

Bibliographic Details
Main Author: Iida Yusuke
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:Journal of Space Weather and Space Climate
Subjects:
Online Access:http://dx.doi.org/10.1051/swsc/2016022
Description
Summary:The solar dynamo problem is the question of how the cyclic variation in the solar magnetic field is maintained. One of the important processes is the transport of magnetic flux by surface convection. To reveal this process, the dependence of the squared displacement of magnetic flux concentrations on the elapsed time is investigated in this paper via a feature-recognition technique and a continual five-day magnetogram. This represents the longest time scale over which a satellite observation has ever been performed for this problem. The dependence is found to follow a power law and differ significantly from that of diffusion transport. Furthermore, there is a change in the behavior at a spatial scale of 103.8 km. A super-diffusion behavior with an index of 1.4 is found at smaller scales, while changing to a sub-diffusion behavior with an index of 0.6 on larger ones. We interpret this difference in the transport regime as coming from the network-flow pattern.
ISSN:2115-7251