Streamlining Quantitative Analysis of Long RNA Sequencing Reads

Transcriptome analyses allow for linking RNA expression profiles to cellular pathways and phenotypes. Despite improvements in sequencing methodology, whole transcriptome analyses are still tedious, especially for methodologies producing long reads. Currently, available data analysis software often l...

Full description

Bibliographic Details
Main Authors: Sebastian Oeck, Alicia I. Tüns, Sebastian Hurst, Alexander Schramm
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/19/7259
Description
Summary:Transcriptome analyses allow for linking RNA expression profiles to cellular pathways and phenotypes. Despite improvements in sequencing methodology, whole transcriptome analyses are still tedious, especially for methodologies producing long reads. Currently, available data analysis software often lacks cost- and time-efficient workflows. Although kit-based workflows and benchtop platforms for RNA sequencing provide software options, e.g., cloud-based tools to analyze basecalled reads, quantitative, and easy-to-use solutions for transcriptome analysis, especially for non-human data, are missing. We therefore developed a user-friendly tool, termed Alignator, for rapid analysis of long RNA reads requiring only FASTQ files and an Ensembl cDNA database reference. After successful mapping, Alignator generates quantitative information for each transcript and provides a table in which sequenced and aligned RNA are stored for further comparative analyses.
ISSN:1661-6596
1422-0067