A Game-Theoretic Analysis of <i>Baccara Chemin de Fer</i>, II

In a previous paper, we considered several models of the parlor game <i>baccara chemin de fer</i>, including Model B2 (a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn>&l...

Full description

Bibliographic Details
Main Authors: Stewart N. Ethier, Jiyeon Lee
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Games
Subjects:
Online Access:https://www.mdpi.com/2073-4336/14/5/63
_version_ 1797626767213592576
author Stewart N. Ethier
Jiyeon Lee
author_facet Stewart N. Ethier
Jiyeon Lee
author_sort Stewart N. Ethier
collection DOAJ
description In a previous paper, we considered several models of the parlor game <i>baccara chemin de fer</i>, including Model B2 (a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><msup><mn>2</mn><mn>484</mn></msup></mrow></semantics></math></inline-formula> matrix game) and Model B3 (a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mn>5</mn></msup><mo>×</mo><msup><mn>2</mn><mn>484</mn></msup></mrow></semantics></math></inline-formula> matrix game), both of which depend on a positive-integer parameter <i>d</i>, the number of decks. The key to solving the game under Model B2 was what we called Foster’s algorithm, which applies to additive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><msup><mn>2</mn><mi>n</mi></msup></mrow></semantics></math></inline-formula> matrix games. Here “additive” means that the payoffs are additive in the <i>n</i> binary choices that comprise a player II pure strategy. In the present paper, we consider analogous models of the casino game <i>baccara chemin de fer</i> that take into account the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mspace width="0.166667em"></mspace><mi>α</mi></mrow></semantics></math></inline-formula> percent commission on Banker (player II) wins, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>10</mn></mrow></semantics></math></inline-formula>. Thus, the game now depends not just on the discrete parameter <i>d</i> but also on a continuous parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>. Moreover, the game is no longer zero sum. To find all Nash equilibria under Model B2, we generalize Foster’s algorithm to additive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><msup><mn>2</mn><mi>n</mi></msup></mrow></semantics></math></inline-formula> bimatrix games. We find that, with rare exceptions, the Nash equilibrium is unique. We also obtain a Nash equilibrium under Model B3, based on Model B2 results, but here we are unable to prove uniqueness.
first_indexed 2024-03-11T10:14:52Z
format Article
id doaj.art-854a139e4b2a4eb8947d8d743251dfb4
institution Directory Open Access Journal
issn 2073-4336
language English
last_indexed 2024-03-11T10:14:52Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Games
spelling doaj.art-854a139e4b2a4eb8947d8d743251dfb42023-11-16T10:24:40ZengMDPI AGGames2073-43362023-09-011456310.3390/g14050063A Game-Theoretic Analysis of <i>Baccara Chemin de Fer</i>, IIStewart N. Ethier0Jiyeon Lee1Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USADepartment of Statistics, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of KoreaIn a previous paper, we considered several models of the parlor game <i>baccara chemin de fer</i>, including Model B2 (a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><msup><mn>2</mn><mn>484</mn></msup></mrow></semantics></math></inline-formula> matrix game) and Model B3 (a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mn>5</mn></msup><mo>×</mo><msup><mn>2</mn><mn>484</mn></msup></mrow></semantics></math></inline-formula> matrix game), both of which depend on a positive-integer parameter <i>d</i>, the number of decks. The key to solving the game under Model B2 was what we called Foster’s algorithm, which applies to additive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><msup><mn>2</mn><mi>n</mi></msup></mrow></semantics></math></inline-formula> matrix games. Here “additive” means that the payoffs are additive in the <i>n</i> binary choices that comprise a player II pure strategy. In the present paper, we consider analogous models of the casino game <i>baccara chemin de fer</i> that take into account the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mspace width="0.166667em"></mspace><mi>α</mi></mrow></semantics></math></inline-formula> percent commission on Banker (player II) wins, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>10</mn></mrow></semantics></math></inline-formula>. Thus, the game now depends not just on the discrete parameter <i>d</i> but also on a continuous parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>. Moreover, the game is no longer zero sum. To find all Nash equilibria under Model B2, we generalize Foster’s algorithm to additive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><msup><mn>2</mn><mi>n</mi></msup></mrow></semantics></math></inline-formula> bimatrix games. We find that, with rare exceptions, the Nash equilibrium is unique. We also obtain a Nash equilibrium under Model B3, based on Model B2 results, but here we are unable to prove uniqueness.https://www.mdpi.com/2073-4336/14/5/63<i>baccara</i><i>chemin de fer</i>sampling without replacementbimatrix gamebest responseNash equilibrium
spellingShingle Stewart N. Ethier
Jiyeon Lee
A Game-Theoretic Analysis of <i>Baccara Chemin de Fer</i>, II
Games
<i>baccara</i>
<i>chemin de fer</i>
sampling without replacement
bimatrix game
best response
Nash equilibrium
title A Game-Theoretic Analysis of <i>Baccara Chemin de Fer</i>, II
title_full A Game-Theoretic Analysis of <i>Baccara Chemin de Fer</i>, II
title_fullStr A Game-Theoretic Analysis of <i>Baccara Chemin de Fer</i>, II
title_full_unstemmed A Game-Theoretic Analysis of <i>Baccara Chemin de Fer</i>, II
title_short A Game-Theoretic Analysis of <i>Baccara Chemin de Fer</i>, II
title_sort game theoretic analysis of i baccara chemin de fer i ii
topic <i>baccara</i>
<i>chemin de fer</i>
sampling without replacement
bimatrix game
best response
Nash equilibrium
url https://www.mdpi.com/2073-4336/14/5/63
work_keys_str_mv AT stewartnethier agametheoreticanalysisofibaccarachemindeferiii
AT jiyeonlee agametheoreticanalysisofibaccarachemindeferiii
AT stewartnethier gametheoreticanalysisofibaccarachemindeferiii
AT jiyeonlee gametheoreticanalysisofibaccarachemindeferiii