A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats.
Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2023-04-01
|
Series: | PLoS Neglected Tropical Diseases |
Online Access: | https://doi.org/10.1371/journal.pntd.0011234 |
_version_ | 1797831691070341120 |
---|---|
author | Serena Y Zhao Grant L Hughes Kerri L Coon |
author_facet | Serena Y Zhao Grant L Hughes Kerri L Coon |
author_sort | Serena Y Zhao |
collection | DOAJ |
description | Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti-a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity. |
first_indexed | 2024-04-09T13:55:51Z |
format | Article |
id | doaj.art-854b2fbb809544bab5361c28e89feb35 |
institution | Directory Open Access Journal |
issn | 1935-2727 1935-2735 |
language | English |
last_indexed | 2024-04-09T13:55:51Z |
publishDate | 2023-04-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS Neglected Tropical Diseases |
spelling | doaj.art-854b2fbb809544bab5361c28e89feb352023-05-08T05:32:40ZengPublic Library of Science (PLoS)PLoS Neglected Tropical Diseases1935-27271935-27352023-04-01174e001123410.1371/journal.pntd.0011234A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats.Serena Y ZhaoGrant L HughesKerri L CoonMosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti-a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity.https://doi.org/10.1371/journal.pntd.0011234 |
spellingShingle | Serena Y Zhao Grant L Hughes Kerri L Coon A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. PLoS Neglected Tropical Diseases |
title | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. |
title_full | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. |
title_fullStr | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. |
title_full_unstemmed | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. |
title_short | A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. |
title_sort | cryopreservation method to recover laboratory and field derived bacterial communities from mosquito larval habitats |
url | https://doi.org/10.1371/journal.pntd.0011234 |
work_keys_str_mv | AT serenayzhao acryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT grantlhughes acryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT kerrilcoon acryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT serenayzhao cryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT grantlhughes cryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats AT kerrilcoon cryopreservationmethodtorecoverlaboratoryandfieldderivedbacterialcommunitiesfrommosquitolarvalhabitats |