On Lp-approximation by Mütz rational functions(Müntz有理函数的加权Lp逼近)
考察了加Jacobi权w(x)=xα(1-x)α(α≥0)的Lp空间中Müntz有理函数的逼近问题.利用K-泛函与加权光滑模的等价性给出了逼近阶的估计以及Ditzian-Totik型定理.所得结果将已有文献中的相应结论推广到了加权情形.
Main Authors: | , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2017-11-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2017.06.010 |
_version_ | 1797235819856003072 |
---|---|
author | WANGJunxia(王军霞) LIGuocheng(李国成) |
author_facet | WANGJunxia(王军霞) LIGuocheng(李国成) |
author_sort | WANGJunxia(王军霞) |
collection | DOAJ |
description | 考察了加Jacobi权w(x)=xα(1-x)α(α≥0)的Lp空间中Müntz有理函数的逼近问题.利用K-泛函与加权光滑模的等价性给出了逼近阶的估计以及Ditzian-Totik型定理.所得结果将已有文献中的相应结论推广到了加权情形. |
first_indexed | 2024-04-24T16:54:01Z |
format | Article |
id | doaj.art-8556d68cb05c42e280bf795a42db4bbc |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:54:01Z |
publishDate | 2017-11-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-8556d68cb05c42e280bf795a42db4bbc2024-03-29T01:58:37ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972017-11-0144671171710.3785/j.issn.1008-9497.2017.06.010On Lp-approximation by Mütz rational functions(Müntz有理函数的加权Lp逼近)WANGJunxia(王军霞)0https://orcid.org/0000-0003-3511-2494LIGuocheng(李国成)1https://orcid.org/0000-0003-1903-7770 1.Department of Public Education, Tianshui Agriculture School, Tianshui 741400, Gansu Province, China( 1.天水农业学校基础部,甘肃 天水 741400) 2.Department of Public Education, Hangzhou Polytechnic, Hangzhou 311402, China( 2.杭州科技职业技术学院公共教学部,浙江 杭州 311402)考察了加Jacobi权w(x)=xα(1-x)α(α≥0)的Lp空间中Müntz有理函数的逼近问题.利用K-泛函与加权光滑模的等价性给出了逼近阶的估计以及Ditzian-Totik型定理.所得结果将已有文献中的相应结论推广到了加权情形.https://doi.org/10.3785/j.issn.1008-9497.2017.06.010加权lp逼近müntz有理函数逼近速度 |
spellingShingle | WANGJunxia(王军霞) LIGuocheng(李国成) On Lp-approximation by Mütz rational functions(Müntz有理函数的加权Lp逼近) Zhejiang Daxue xuebao. Lixue ban 加权lp逼近 müntz有理函数 逼近速度 |
title | On Lp-approximation by Mütz rational functions(Müntz有理函数的加权Lp逼近) |
title_full | On Lp-approximation by Mütz rational functions(Müntz有理函数的加权Lp逼近) |
title_fullStr | On Lp-approximation by Mütz rational functions(Müntz有理函数的加权Lp逼近) |
title_full_unstemmed | On Lp-approximation by Mütz rational functions(Müntz有理函数的加权Lp逼近) |
title_short | On Lp-approximation by Mütz rational functions(Müntz有理函数的加权Lp逼近) |
title_sort | on lp approximation by mutz rational functions muntz有理函数的加权lp逼近 |
topic | 加权lp逼近 müntz有理函数 逼近速度 |
url | https://doi.org/10.3785/j.issn.1008-9497.2017.06.010 |
work_keys_str_mv | AT wangjunxiawángjūnxiá onlpapproximationbymutzrationalfunctionsmuntzyǒulǐhánshùdejiāquánlpbījìn AT liguochenglǐguóchéng onlpapproximationbymutzrationalfunctionsmuntzyǒulǐhánshùdejiāquánlpbījìn |