Amorphous-crystalline boron-containing coatings formed by the ion-plasma

Using the method of high-frequency ion-plasma sputtering (magnetron high-frequency deposition under conditions of ion-plasma assisted using a gas (argon) plasma generator «PINK») on the surface of a high-entropy CoFeCrMnNi alloy of non-equiatomic composition. Boron-containing coatings of the element...

Full description

Bibliographic Details
Main Authors: Yu.F. Ivanov, A.A. Klopotov, V.V. Shugurov, I.I. Azhazha, E.A. Petrikova, O.S. Tolkachev, A.V. Nikonenko
Format: Article
Language:Russian
Published: Tver State University 2023-12-01
Series:Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов
Subjects:
Online Access:https://physchemaspects.ru/2023/doi-10-26456-pcascnn-2023-15-725/?lang=en
Description
Summary:Using the method of high-frequency ion-plasma sputtering (magnetron high-frequency deposition under conditions of ion-plasma assisted using a gas (argon) plasma generator «PINK») on the surface of a high-entropy CoFeCrMnNi alloy of non-equiatomic composition. Boron-containing coatings of the elemental composition Al – Mg – B and Mg – Ti – B with a thickness of 3 μm are formed. Using transmission electron diffraction microscopy, it was found that the coatings are amorphous-crystalline, i.e. contain nanosized 1.5-2 nm islands of the crystalline phase located in an amorphous matrix. It is shown that the coating deposition is accompanied by the formation in the substrate layer (high-entropy alloy) adjacent to the coating of a nanocrystalline structure with a crystallite size of 25-40 nm. At the boundaries of the crystallites, particles of iron boride of the FeB and Fe3B compositions are revealed, which indicate the penetration of boron into the substrate. The particle size of iron boride is 5-8 nm.
ISSN:2226-4442
2658-4360