Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study

We have compared composition changes of NO, NO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>, N<sub>2</sub>O, HNO<sub>3</sub&g...

Full description

Bibliographic Details
Main Authors: B. Funke, A. Baumgaertner, M. Calisto, T. Egorova, C. H. Jackman, J. Kieser, A. Krivolutsky, M. López-Puertas, D. R. Marsh, T. Reddmann, E. Rozanov, S.-M. Salmi, M. Sinnhuber, G. P. Stiller, P. T. Verronen, S. Versick, T. von Clarmann, T. Y. Vyushkova, N. Wieters, J. M. Wissing
Format: Article
Language:English
Published: Copernicus Publications 2011-09-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/11/9089/2011/acp-11-9089-2011.pdf
_version_ 1811322732458016768
author B. Funke
A. Baumgaertner
M. Calisto
T. Egorova
C. H. Jackman
J. Kieser
A. Krivolutsky
M. López-Puertas
D. R. Marsh
T. Reddmann
E. Rozanov
S.-M. Salmi
M. Sinnhuber
G. P. Stiller
P. T. Verronen
S. Versick
T. von Clarmann
T. Y. Vyushkova
N. Wieters
J. M. Wissing
author_facet B. Funke
A. Baumgaertner
M. Calisto
T. Egorova
C. H. Jackman
J. Kieser
A. Krivolutsky
M. López-Puertas
D. R. Marsh
T. Reddmann
E. Rozanov
S.-M. Salmi
M. Sinnhuber
G. P. Stiller
P. T. Verronen
S. Versick
T. von Clarmann
T. Y. Vyushkova
N. Wieters
J. M. Wissing
author_sort B. Funke
collection DOAJ
description We have compared composition changes of NO, NO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>, N<sub>2</sub>O, HNO<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>, HNO<sub>4</sub>, ClO, HOCl, and ClONO<sub>2</sub> as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the "Halloween" solar proton event (SPE) in late October 2003 at 25–0.01 hPa in the Northern Hemisphere (40–90° N) and simulations performed by the following atmospheric models: the Bremen 2-D model (B2dM) and Bremen 3-D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NO<sub>y</sub> and ozone changes. We have further assessed the meteorological conditions and their implications for the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH<sub>4</sub> and CO) fields. <br><br> Simulated SPE-induced ozone losses agree on average within 5 % with the observations. Simulated NO<sub>y</sub> enhancements around 1 hPa, however, are typically 30 % higher than indicated by the observations which are likely to be related to deficiencies in the used ionization rates, though other error sources related to the models' atmospheric background state and/or transport schemes cannot be excluded. The analysis of the observed and modeled NO<sub>y</sub> partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO<sub>3</sub> formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H<sub>2</sub>O<sub>2</sub> enhancements by all models hints at an underestimation of the OH/HO<sub>2</sub> ratio in the upper polar stratosphere during the SPE. The analysis of chlorine species perturbations has shown that the encountered differences between models and observations, particularly the underestimation of observed ClONO<sub>2</sub> enhancements, are related to a smaller availability of ClO in the polar night region already before the SPE. In general, the intercomparison has demonstrated that differences in the meteorology and/or initial state of the atmosphere in the simulations cause a relevant variability of the model results, even on a short timescale of only a few days.
first_indexed 2024-04-13T13:41:14Z
format Article
id doaj.art-855d0b8568e8429d86285d4b751a5237
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-13T13:41:14Z
publishDate 2011-09-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-855d0b8568e8429d86285d4b751a52372022-12-22T02:44:38ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242011-09-0111179089913910.5194/acp-11-9089-2011Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison studyB. FunkeA. BaumgaertnerM. CalistoT. EgorovaC. H. JackmanJ. KieserA. KrivolutskyM. López-PuertasD. R. MarshT. ReddmannE. RozanovS.-M. SalmiM. SinnhuberG. P. StillerP. T. VerronenS. VersickT. von ClarmannT. Y. VyushkovaN. WietersJ. M. WissingWe have compared composition changes of NO, NO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>, N<sub>2</sub>O, HNO<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>, HNO<sub>4</sub>, ClO, HOCl, and ClONO<sub>2</sub> as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the "Halloween" solar proton event (SPE) in late October 2003 at 25–0.01 hPa in the Northern Hemisphere (40–90° N) and simulations performed by the following atmospheric models: the Bremen 2-D model (B2dM) and Bremen 3-D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NO<sub>y</sub> and ozone changes. We have further assessed the meteorological conditions and their implications for the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH<sub>4</sub> and CO) fields. <br><br> Simulated SPE-induced ozone losses agree on average within 5 % with the observations. Simulated NO<sub>y</sub> enhancements around 1 hPa, however, are typically 30 % higher than indicated by the observations which are likely to be related to deficiencies in the used ionization rates, though other error sources related to the models' atmospheric background state and/or transport schemes cannot be excluded. The analysis of the observed and modeled NO<sub>y</sub> partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO<sub>3</sub> formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H<sub>2</sub>O<sub>2</sub> enhancements by all models hints at an underestimation of the OH/HO<sub>2</sub> ratio in the upper polar stratosphere during the SPE. The analysis of chlorine species perturbations has shown that the encountered differences between models and observations, particularly the underestimation of observed ClONO<sub>2</sub> enhancements, are related to a smaller availability of ClO in the polar night region already before the SPE. In general, the intercomparison has demonstrated that differences in the meteorology and/or initial state of the atmosphere in the simulations cause a relevant variability of the model results, even on a short timescale of only a few days.http://www.atmos-chem-phys.net/11/9089/2011/acp-11-9089-2011.pdf
spellingShingle B. Funke
A. Baumgaertner
M. Calisto
T. Egorova
C. H. Jackman
J. Kieser
A. Krivolutsky
M. López-Puertas
D. R. Marsh
T. Reddmann
E. Rozanov
S.-M. Salmi
M. Sinnhuber
G. P. Stiller
P. T. Verronen
S. Versick
T. von Clarmann
T. Y. Vyushkova
N. Wieters
J. M. Wissing
Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study
Atmospheric Chemistry and Physics
title Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study
title_full Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study
title_fullStr Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study
title_full_unstemmed Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study
title_short Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study
title_sort composition changes after the halloween solar proton event the high energy particle precipitation in the atmosphere heppa model versus mipas data intercomparison study
url http://www.atmos-chem-phys.net/11/9089/2011/acp-11-9089-2011.pdf
work_keys_str_mv AT bfunke compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT abaumgaertner compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT mcalisto compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT tegorova compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT chjackman compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT jkieser compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT akrivolutsky compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT mlopezpuertas compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT drmarsh compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT treddmann compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT erozanov compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT smsalmi compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT msinnhuber compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT gpstiller compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT ptverronen compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT sversick compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT tvonclarmann compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT tyvyushkova compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT nwieters compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy
AT jmwissing compositionchangesafterthehalloweensolarprotoneventthehighenergyparticleprecipitationintheatmosphereheppamodelversusmipasdataintercomparisonstudy