An Application for Bi-Concave Functions Associated with <i>q</i>-Convolution

The aim of this paper is to introduce and investigate some new subclasses of bi-concave functions using <i>q</i>-convolution and some applications. These special cases are obtaining by making use of a <i>q</i>- derivative linear operator. For the new introduced subclasses, th...

Full description

Bibliographic Details
Main Authors: Sheza M. El-Deeb, Adriana Catas
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/22/4680
_version_ 1797458518774644736
author Sheza M. El-Deeb
Adriana Catas
author_facet Sheza M. El-Deeb
Adriana Catas
author_sort Sheza M. El-Deeb
collection DOAJ
description The aim of this paper is to introduce and investigate some new subclasses of bi-concave functions using <i>q</i>-convolution and some applications. These special cases are obtaining by making use of a <i>q</i>- derivative linear operator. For the new introduced subclasses, the authors obtain the first two initial Taylor–Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>c</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>c</mi><mn>3</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> of bi-concave functions. For certain values of the parameters, the authors deduce interesting corollaries for coefficient bounds which imply special cases of the new introduced operator. Also, we develop two examples for coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>c</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>c</mi><mn>3</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> for certain functions.
first_indexed 2024-03-09T16:38:18Z
format Article
id doaj.art-85601e8a4c9b4e538c59710cd26b3869
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T16:38:18Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-85601e8a4c9b4e538c59710cd26b38692023-11-24T14:54:27ZengMDPI AGMathematics2227-73902023-11-011122468010.3390/math11224680An Application for Bi-Concave Functions Associated with <i>q</i>-ConvolutionSheza M. El-Deeb0Adriana Catas1Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah 52571, Saudi ArabiaDepartment of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, RomaniaThe aim of this paper is to introduce and investigate some new subclasses of bi-concave functions using <i>q</i>-convolution and some applications. These special cases are obtaining by making use of a <i>q</i>- derivative linear operator. For the new introduced subclasses, the authors obtain the first two initial Taylor–Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>c</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>c</mi><mn>3</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> of bi-concave functions. For certain values of the parameters, the authors deduce interesting corollaries for coefficient bounds which imply special cases of the new introduced operator. Also, we develop two examples for coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>c</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>c</mi><mn>3</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> for certain functions.https://www.mdpi.com/2227-7390/11/22/4680bi-concaveconvolutionfractional derivativeq-derivativeq-analogue of poisson operator
spellingShingle Sheza M. El-Deeb
Adriana Catas
An Application for Bi-Concave Functions Associated with <i>q</i>-Convolution
Mathematics
bi-concave
convolution
fractional derivative
q-derivative
q-analogue of poisson operator
title An Application for Bi-Concave Functions Associated with <i>q</i>-Convolution
title_full An Application for Bi-Concave Functions Associated with <i>q</i>-Convolution
title_fullStr An Application for Bi-Concave Functions Associated with <i>q</i>-Convolution
title_full_unstemmed An Application for Bi-Concave Functions Associated with <i>q</i>-Convolution
title_short An Application for Bi-Concave Functions Associated with <i>q</i>-Convolution
title_sort application for bi concave functions associated with i q i convolution
topic bi-concave
convolution
fractional derivative
q-derivative
q-analogue of poisson operator
url https://www.mdpi.com/2227-7390/11/22/4680
work_keys_str_mv AT shezameldeeb anapplicationforbiconcavefunctionsassociatedwithiqiconvolution
AT adrianacatas anapplicationforbiconcavefunctionsassociatedwithiqiconvolution
AT shezameldeeb applicationforbiconcavefunctionsassociatedwithiqiconvolution
AT adrianacatas applicationforbiconcavefunctionsassociatedwithiqiconvolution