Hybrid Nanomaterials of Magnetic Iron Nanoparticles and Graphene Oxide as Matrices for the Immobilization of β-Glucosidase: Synthesis, Characterization, and Biocatalytic Properties

Hybrid nanostructures of magnetic iron nanoparticles and graphene oxide were synthesized and used as nanosupports for the covalent immobilization of β-glucosidase. This study revealed that the immobilization efficiency depends on the structure and the surface chemistry of nanostructures employed. Th...

Full description

Bibliographic Details
Main Authors: Georgios Orfanakis, Michaela Patila, Alexandra V. Catzikonstantinou, Kyriaki-Marina Lyra, Antonios Kouloumpis, Konstantinos Spyrou, Petros Katapodis, Alkiviadis Paipetis, Petra Rudolf, Dimitrios Gournis, Haralambos Stamatis
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-04-01
Series:Frontiers in Materials
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fmats.2018.00025/full
Description
Summary:Hybrid nanostructures of magnetic iron nanoparticles and graphene oxide were synthesized and used as nanosupports for the covalent immobilization of β-glucosidase. This study revealed that the immobilization efficiency depends on the structure and the surface chemistry of nanostructures employed. The hybrid nanostructure-based biocatalysts formed exhibited a two to four-fold higher thermostability as compared to the free enzyme, as well as an enhanced performance at higher temperatures (up to 70°C) and in a wider pH range. Moreover, these biocatalysts retained a significant part of their bioactivity (up to 40%) after 12 repeated reaction cycles.
ISSN:2296-8016